Chaotic global parameters correlation with heart rate variability in obese children

Autores/as

  • Franciele M. Vanderlei Univ Estadual Paulista - Presidente Prudente, Sao Paulo
  • Luiz Carlos M. Vanderlei Univ Estadual Paulista - Presidente Prudente, Sao Paulo
  • David M. Garner Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford

DOI:

https://doi.org/10.7322/jhgd.72041

Palabras clave:

principal component analysis, electrocardiography, nonlinear dynamics

Resumen

The aim of the study is to analyze heart rate dynamics in obese children by measures of HRV. HRV is a simple and non-invasive measure of autonomic impulses. 94 children of mixed gender aged eight to twelve years were divided into two equal groups based on body mass index: obese and normal weight range. HRV was monitored in the dorsal decubitus position for 20 minutes. After tests of normality, Kruskal Wallis was applied for the statistical analysis, with the level of significance set at (p < 0.05). Regarding the application of Principal Component Analysis the first two components represent 99.4% of total variance. The obese children exhibited in heart frequency dynamics associated to an increase in the Chaos Forward Parameter. The Chaos Forward Parameter which applies all three chaotic global parameters is suggested to be the most robust algorithm. Obesity in children can be termed a dynamical condition but it increases the chaotic response.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Franciele M. Vanderlei, Univ Estadual Paulista - Presidente Prudente, Sao Paulo
    Department of Physiotherapy, UNESP - Univ Estadual Paulista - Presidente Prudente, Sao Paulo, Brazil.
  • Luiz Carlos M. Vanderlei, Univ Estadual Paulista - Presidente Prudente, Sao Paulo
    Department of Physiotherapy, UNESP - Univ Estadual Paulista - Presidente Prudente, Sao Paulo, Brazil.
  • David M. Garner, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford
    Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom

Referencias

Seely AJ and Macklem P (2012) Fractal variability: an emergent property of complexdissipative systems. Chaos 22 (1):013108.

Goldberger AL, Rigney DR, and West BJ (1990) Chaos and fractals in human physiology. Sci Am 262 (2):42-49.

Amaral LA, Diaz-Guilera A, Moreira AA, Goldberger AL, and Lipsitz LA (2004) Emergence of complex dynamics in a simple model of signaling networks. Proc Natl Acad Sci USA 101 (44):15551-15555.

Costa M, Goldberger AL, and Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys 71 (2 Pt 1):021906.

Elbert T, Rockstroh B, Kowalik ZJ, Hoke M, Molnar M, Skinner JE, and Birbaumer N (1995) Chaotic brain activity. Electroencephalogr Clin Neurophysiol Suppl 44:441-9.:441-449.

Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, and Goldberger AL (1995) Fractal mechanisms and heart rate dynamics. Longrange correlations and their breakdown with disease. J Electrocardiol 28 Suppl:59-65.

Skinner JE, Molnar M, Vybiral T, and Mitra M (1992) Application of chaos theory to biology and medicine. Integr Physiol Behav Sci 27 (1):39-53.

Seitsonen ER, Korhonen IK, van Gils MJ, Huiku M, Lotjonen JM, Korttila KT, and Yli-Hankala AM (2005) EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia. Acta Anaesthesiol Scand 49 (3): 284-292.

Choi SR, Lim YH, Lee SC, Lee JH, and Chung CJ (2010) Spectral entropy monitoring allowed lower sevoflurane concentration and faster recovery in children. Acta Anaesthesiol Scand 54 (7):859-862.

Vakkuri A, Yli-Hankala A, Talja P, Mustola S, Tolvanen-Laakso H, Sampson T, and Viertio-Oja H (2004) Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand 48 (2):145-153.

Johnson RW and Shore JE (1984) Which is the better entropy expression for speech processing: -S logS or log S? IEEE Trans Acoust.

Garner DM and Ling BWK. Measuring and locating zones of chaos and irregularities. Journal of System Science and Complexity (in press).

Kawaguchi M, Takamatsu I, and Kazama T (2009) Rocuronium dose-dependently suppresses the spectral entropy response to tracheal intubation during propofol anaesthesia. Br J Anaesth 102 (5):667-672.

Alvarez D, Hornero R, Marcos J, Del Campo F, and Lopez M (2009) Spectral analysis of electroencephalogram and oximetric signals in obstructive sleep apnea diagnosis. Conf Proc IEEE Eng Med Biol Soc 2009:400-403.

Banzett RB, Pedersen SH, Schwartzstein RM, and Lansing RW (2008) The affective dimension of laboratory dyspnea: air hunger is more unpleasant than work/effort. Am J Respir Crit Care Med 177 (12):1384-1390.

Shumway NM, Wilson RL, Howard RS, Parker JM, and Eliasson AH (2008) Presence and treatment of air hunger in severely ill patients. Respir Med 102 (1):27-31.

Daniels SR (2009) Sleep and obesity. J Pediatr 154 (6):A3.

Daniels SR (2009) Complications of obesity in children and adolescents. Int J Obes (Lond) 33 Suppl 1:S60-S65.

Lee YS (2009) Consequences of childhood obesity. Ann Acad Med Singapore 38 (1):75-77.

Ho TF (2009) Cardiovascular risks associated with obesity in children and adolescents. Ann Acad Med Singapore 38 (1):48-49.

Kaufman CL, Kaiser DR, Steinberger J, Kelly AS, and Dengel DR (2007) Relationships of cardiac autonomic function with metabolic abnormalities in childhood obesity. Obesity (Silver Spring) 15 (5):1164-1171.

Tonhajzerova I, Javorka M, Trunkvalterova Z, Chroma O, Javorkova J, Lazarova Z, Ciljakova M, and Javorka K (2008) Cardio-respiratory interaction and autonomic dysfunction in obesity. J Physiol Pharmacol 59 Suppl 6: 709-718.

Mackey MC and Milton JG (1987) Dynamical diseases. Annals of the New York Academy of Sciences 504 (1):16-32.

Alkan A and Kiymik MK (2006) Comparison of AR and Welch methods in epileptic seizure detection. J Med Sys 6 (30):413-419.

Percival DB and Walden AT (1993) Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge University Press.

Stilp CE, Kiefte M, Alexander JM, and Kluender KR (2010) Cochlea-scaled spectral entropy predicts rate-invariant intelligibility of temporally distorted sentences. J Acoust Soc Am 128 (4):2112-2126.

Hocker J, Raitschew B, Meybohm P, Broch O, Stapelfeldt C, Gruenewald M, Cavus E, Steinfath M, and Bein B (2010) Differences between bispectral index and spectralentropy during xenon anaesthesia: a comparison with propofol anaesthesia. Anaesthesia 65 (6):595-600.

Shannon CE (1948) A Mathematical Theory of Communication. The Bell System Technical Journal 27:379-423.

Zyczkowski K (2003) Renyi extrapolation of Shannon entropy. Open Systems & Information Dynamics 3 (10):297-310.

Peng CK, Havlin S, Stanley HE, and Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5 (1):82-87.

Donaldson GC, Seemungal TA, Hurst JR, and Wedzicha JA (2012) Detrended fluctuation analysis of peak expiratory flow and exacerbation frequency in COPD. Eur Respir J 40 (5):1123-1129.

Ghil M (1997) The SSA-MTM Toolkit: Applications to analysis and prediction of time series. Applications of Soft Computing 3165: 216-230.

Slepian S (1978) Prolate spheroidal wave functions, Fourier analysis and uncertainty, V, The discrete case. Bell Syst Tech J 57: 1371-1430.

Anderson TW and Darling DA (1954) A test of goodness of fit. Journal of the American Statistical Association 49 (268):765-769.

Ryan TA and Joiner BL (1976) Normal probability plots and tests for normality. Minitab Statistical Software: Technical Reports. The Pennsylvania State University, State College, PA. Available from MINITAB. Inc,

Kruskal WH and Wallis WA (1952) Use of ranks in one-criterion variance analysis. Journal of theAmerican Statistical Association 260 (47): 583-621.

Hsu JC (1996) Multiple Comparisons:: Theory and Methods. CRC Press,

Jolliffe IT (2002) Principal Component Analysis, Series: Springer Series in Statistics.Vol. Second Edition. Springer, New York.

Baum P, Petroff D, Classen J, Kiess W, and Bluher S (2013) Dysfunction of autonomic nervous system in childhood obesity: a crosssectional study. PloS One 8 (1):e54546.

Altuncu ME, Baspinar O, and Keskin M (2012) The use of short-term analysis of heart rate variability to assess autonomic function in obese children and its relationship with metabolic syndrome. Cardiology journal 19

(5): 501-506.

Nascimento VG, da Silva JnPC, Machado TC, Bertoli CJ, Valenti VE, and Leone C (2013) Preschool children and excess weight: the impact of a low complexity intervention in public day care centers. Journal of Human Growth and Development 23 (3):290-295.

Nascimento VG, Salvador EPr, da Silva JnPC, Bertoli CJ, de Toledo Blake M, and Leone C (2012) Overweight in preschool children: analysis of a possible intervention. Journal of Human Growth and Development 22 (1):11-16.

de Souza NM, Rossi RC, Vanderlei FM, Vitor ALR, Bernardo AFB, Goncalves ACCR, Ferreira LL, and Vanderlei LCM (2012) Heart rate variability in obese children. Journal of Human Growth and Development 22(3).

Vanderlei LC, Pastre CM, Junior IF, and de Godoy MF (2010) Fractal correlation of heart rate variability in obese children. Auton Neurosci 155 (1-2):125-129.

Descargas

Publicado

2014-02-01

Número

Sección

Artigos Originais