IEML: towards a paradigm shift in Artificial Intelligence
DOI:
https://doi.org/10.11606/issn.1982-8160.v16i1p11-34Keywords:
Artificial intelligence, Semantic code, Collective intelligence, Information Economy MetaLanguageAbstract
The goal of this essay is to present an overview of the limitations of contemporary AI (artificial intelligence) and to propose an approach to overcome them with a computable semantic metalanguage. I propose that AI adopts a computable and univocal model of the human language, the Information Economy Metalanguage (IEML), a semantic code of my own invention. IEML has the expressive power of a natural language and the syntax of a regular language. This can open new avenues for Artificial Intelligence to create a synergy between the democratization of data control and the enhancement of collective intelligence.
Downloads
References
Berners-Lee, T. (1999). Weaving the Web. Harper.
Bush, V. (1945, julho). As we may think. Atlantic Monthly.
Chomsky, N. (1957). Syntaxic structures. Mouton.
Chomsky, N., & Schützenberger, M.-P. (1963). The algebraic theory of context-free languages. In P. Braffort & D. Hirschberg (Eds.), Computer Programming and Formal Languages (pp. 118-161).
Chomsky, N. (2000). New horizons in the study of language and mind. Cambridge UP.
Engelbart, D. (1962). Augmenting human intellect [Relatório técnico]. Stanford Research Institute.
Ernst, D. (2020). AI research and governance are at a crossroads. CIGI Online. https://www.cigionline.org/articles/ai-research-and-governance-are-crossroads/
Garcez, A. A., & Lamb, L. C. (2020). Neurosymbolic AI: The 3rd Wave. https://arxiv.org/pdf/2012.05876.pdf
Kripke, S. (1980). Naming and Necessity. Blackwell.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539
Lévy, P. (1986). Analyze de contenu des travaux du Biological Computer Laboratory (BCL). Cahiers du CREA, 8, 155-191.
Lévy, P. (1986). L’Œuvre de Warren McCulloch. Cahiers du CREA, 7, 211-255.
Lévy, P. (1991). Les systèmes à base de connaissance comme médias de transmission de l’expertise. Intellectica, 12, 187-219.
Lévy, P. (1992). De la programmation considérée comme un des beaux-arts. La Découverte.
Lévy, P. (1994). L’intelligence collective, pour une anthropologie du cyberespace. La Découverte. Edição inglesa: Lévy, P. (1997). Collective intelligence (R. Bonono, Trans.). Perseus Books.
Lévy, P. (2009). Toward a self-referential collective intelligence: Some philosophical background of the IEML research program. In N. T. Nguyen, R. Kowalczyk & C. Shyi-Ming (Eds.), Computational collective intelligence, semantic web, social networks and multiagent systems. First International Conference, ICCCI, Wroclaw, Poland, Oct. 2009, Proceedings (pp. 22-35). Springer.
Lévy, P. (2010, 2 de janeiro). The IEML research program: From social computing to reflexive collective intelligence. Information sciences, special issue on collective intelligence, 180(1), 71-94.
Lévy, P. (2011). The semantic sphere. Computation, cognition and information economy. Wiley.
Lévy, P. (2021). Proper nouns in IEML. Intlekt. https://intlekt.io/proper-names-in-ieml/
Lévy, P. (2021). The linguistic roots of IEML. Intlekt. https://intlekt.io/the-linguistic-roots-of-ieml/
Licklider, J. (1960). Man-computer symbiosis. IRE Transactions on human factors in electronics, 1, 4-11.
Marcus, G., & Davis, E. (2019). Rebooting AI: Building artificial intelligence we can trust. Vintage.
McClelland, J. L., Rumelheart, D. E., & PDP Research Group. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. 2 vols. MIT Press.
McCulloch, W. S. (1965). Embodiments of mind. MIT Press.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133. https://doi.org/10.1007/BF02478259
Minsky, M. & Papert, S. (1969). Perceptrons, MIT Press.
Minsky, M. (1986). The Society of Mind. Simon and Schuster.
Pearl, J., & Mackenzie, D. (2019). The book of why: The new science of cause and effect. Basic Books.
Popper, K. (1972). Objective knowledge: An evolutionary approach. Clarendon Press.
Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Spartan Books.
Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. https://doi.org/10.1038/323533a0
von Foerster, H. (1981). Observing Systems: Selected Papers of Heinz von Foerster, Intersystems Publications.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Pierre Lévy

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License (CC BY-NC-SA 4.0) which allows sharing of the work with acknowledgment of authorship and initial publication in this journal for non-commercial purposes.
- Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.