Chemical characterization of deep-sea corals from the continental slope of Santos Basin (southeastern Brazilian upper margin)

Authors

  • Tailisi Hoppe Trevizani
  • Renata Hanae Nagai
  • Rubens Cesar Lopes Figueira
  • Paulo Yukio Gomes Sumida
  • Michel Michaelovitch de Mahiques

DOI:

https://doi.org/10.1590/

Keywords:

Metals, Stable isotopes], Enallopsammia rostrata, Solenosmilia variabilis, Desmophyllum pertusum

Abstract

Carbonate mounds and pockmarks are geologically and ecologically important features distributed worldwide in the world’s oceans. In the present study, we present a chemical characterization of deep-sea scleractinian coral skeletons collected in these geomorphological areas at the southeastern continental margin of Brazil. Coral samples were collected from ten sampling stations during cruises aboard the R/V Alpha Crucis, in 2019. Three species of scleractinian corals were studied: Enallopsammia rostrata, Solenosmilia variabilis, and Desmophyllum pertusum. Stable isotopes of carbon and oxygen (δ13C and δ18O), metals, and phosphorus present in the coral carbonate skeletons were analyzed. Corals are recognized as archives of physical-chemical variations in the marine environment, and the Element/Ca ratios, δ13C, and δ18O allowed for the characterization of the studied areas. Chemical composition found in pockmark areas indicated affinity to terrigenous and particulate materials input (Ba/Ca, Fe/Ca, Mn/Ca, Li/Ca, and Mg/Ca). Greater availability of nutrients and anthropogenic materials (Pb/Ca, Cd/Ca, Zn/Ca, and P/Ca) is also likely to occur in this region, with some elemental ratios higher than those measured in other oceans. These mounds can act as barriers for metals from land flows. Also, corals benefit from a higher food supply due to stronger currents. The corals at the top of the Alpha Crucis Carbonate Ridge receive significant marine influence. Most coral samples have carbonate of aragonitic origin, except for a specimen of D. pertusum, which presented carbonate of biogenic calcite and aragonite. The results demonstrate the potential of scleractinian corals in the chemical characterization of the deep ocean and the need for further investigation of carbonate mound areas from the SW Atlantic.

References

ANAGNOSTOU, E., SHERRELL, R. M., GAGNON, A., LAVIGNE, M., FIELD, M. P. & MCDONOUGH, W. F. 2011. Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochimica et Cosmochimica Acta, 75, 2529-2543.

ANU, G., KUMAR, N. C., JAYALAKSHMI, K. J. & NAIR, S. M. 2007. Monitoring of heavy metal partitioning in reef corals of Lakshadweep Archipelago, Indian Ocean. Environmental Monitoring and Assessment, 128, 195-208.

BAYON, G., PIERRE, C., ETOUBLEAU, J., VOISSET, M., CAUQUIL, E., MARSSET, T., SULTAN, N., LE DREZEN, E. & FOUQUET, Y. 2007. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments. Marine Geology, 241(1-4), 93-109.

BECK, J. W., EDWARDS, R. L., ITO, E., TAYLOR, F. W., RECY, J., ROUGERIE, F., JOANNOT, P. & HENIN, C. 1992. Sea-surface temperature from coral skeletal strontium/calcium ratios. Science, 257(5070), 644-647.

CARRIQUIRY, J. D. & VILLAESCUSA, J. A. 2010. Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California. Climate of the Past, 6(3), 401-410.

CASE, D. H., ROBINSON, L. F., AURO, M. E. & GAGNON, A. C. 2010. Environmental and biological controls on Mg and Li in deep-sea scleractinian corals. Earth and Planetary Science Letters, 300, 215-225.

CHEN, S., GAGNON, A. C. & ADKINS, J. F. 2018. Carbonic anhydrase, coral calcification and a new model of stable isotope vital effects. Geochimica et Cosmochimica Acta, 236, 179-197.

CHEN, T. R., YU, K. F., LI, S., PRICE, G. J., SHI, Q. & WEI, G. J. 2010. Heavy metal pollution recorded in Porites corals from Daya Bay, northern South China Sea. Marine Environmental Research, 70(3-4), 318-326.

COHEN, A. L., GAETANI, G. A., LUNDÄLV, T., CORLISS, B. H. & GEORGE, R. Y. 2006. Compositional variability in a cold-water scleractinian,Lophelia pertusa: New insights into “vital effects”. Geochemistry, Geophysics, Geosystems, 7(12), 1-10.

DORSCHEL, B., HEBBELN, D., FOUBERT, A., WHITE, M. & WHEELER, A. J. 2007. Hydrodynamics and cold-water coral facies distribution related to recent sedimentary processes at Galway Mound west of Ireland. Marine Geology, 244(1-4), 184-195.

FINK, H. G., WIENBERG, C., DE POL-HOLZ, R. & HEBBELN, D. 2015. Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and Madrepora oculata) during the past 14,000 years. Deep Sea Research Part I: Oceanographic Research Papers, 103, 37-48.

FREIWALD, A., ROGERS, A., HALL-SPENCER, J., GUINOTTE, J. M., DAVIES, A. J., YESSON, C., MARTIN, C. S. & WEATHERDON, L. V. 2017. Global distribution of cold-water corals (version 5.0) [online]. Cambridge (UK): UN Environment World Conservation Monitoring Centre. Available at: http://data.unep-wcmc.org/datasets/3

» http://data.unep-wcmc.org/datasets/3

FUJIKURA, K., YAMANAKA, T., SUMIDA, P. Y. G., BERNARDINO, A. F., PEREIRA, O. S., KANEHARA, T., NAGANO, Y., NAKAYAMA, C. R., NOBREGA, M., PELLIZARI, V. H., SHIGENO, S., YOSHIDA, T., ZHANG, J. & KITAZATO, H. 2017. Discovery of asphalt seeps in the deep Southwest Atlantic off Brazil. Deep Sea Research Part II: Topical Studies in Oceanography, 146, 35-44, DOI: https://doi.org/10.1016/j.dsr2.2017.04.002

» https://doi.org/10.1016/j.dsr2.2017.04.002

HAMMER, Ø., HARPER, D. A. T. & RYAN, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1-9.

HANNA, R. G. & MUIR, G. L. 1990. Red sea corals as biomonitors of trace metal pollution. Environmental Monitoring and Assessing, 14, 211-222.

HASEGAWA, H., RAHMAN, M. A., LUAN, N. T., MAKI, T. & IWASAKI, N. 2012. Trace elements in Corallium spp. as indicators for origin and habitat. Journal of Experimental Marine Biology and Ecology, 414-415, 1-5.

HENRIET, J. P., HAMOUMI, N., DA SILVA, A. C., FOUBERT, A., LAURIDSEN, B. W., RÜGGEBERG, A. & VAN ROOIJ, D. 2014. Carbonate mounds: from paradox to World Heritage. Marine Geology, 352, 89-110.

INOUE, M., HATA, A., SUZUKI, A., NOHARA, M., SHIKAZONO, N., YIM, W. W., HANTORO, W. S., DONGHUAI, S. & KAWAHATA, H. 2006. Distribution and temporal changes of lead in the surface seawater in the western Pacific and adjacent seas derived from coral skeletons. Environment Pollution, 144(3), 1045-1052.

INOUE, M., SUZUKI, A., NOHARA, M., KAN, H., EDWARD, A. & KAWAHATA, H. 2004. Coral skeletal tin and copper concentrations at Pohnpei, Micronesia: possible index for marine pollution by toxic anti-biofouling paints. Environment Pollution, 129(3), 399-407.

JÄGERBRAND, A. K., BRUTEMARK, A., SVEDÉN, J. B. & GREN, I. M. 2019. A review on the environmental impacts of shipping on aquatic and nearshore ecosystems. Science of the Total Environment, 695, 133637.

JIANG, Q., CAO, Z., WANG, D., LI, Y., WU, Z. & NI, J. 2017. Coral Ba/Ca and Mn/Ca ratios as proxies of precipitation and terrestrial input at the eastern offshore area of Hainan Island. Journal of Ocean University of China, 16, 1072-1080.

JOSEPH, C., CAMPBELL, K. A., TORRES, M. E., MARTIN, R. A., POHLMAN, J. W., RIEDEL, M. & ROSE, K. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 390, 52-67.

KELLY, A. E., REUER, M. K., GOODKIN, N. F. & BOYLE, E. A. 2009. Lead concentrations and isotopes in corals and water near Bermuda, 1780-2000. Earth and Planetary Science Letters, 283, 93-100.

KIM, B. S. M., FIGUEIRA, R. C. L., ANGELI, J. L. F., FERREIRA, P. A. L., MAHIQUES, M. M. & BICEGO, M. C. 2021. Insights into leaded gasoline registered in mud depocenters derived from multivariate statistical tool: southeastern Brazilian coast. Environmental Geochemistry and Health, 43(1), 47-63.

LAVIGNE, M., MATTHEWS, K. A., GROTTOLI, A. G., COBB, K. M., ANAGNOSTOU, E., CABIOCH, G. & SHERRELL, R. M. 2010. Coral skeleton P/Ca proxy for seawater phosphate: multi-colony calibration with a contemporaneous seawater phosphate record. Geochimica et Cosmochimica Acta, 74, 1282-1293.

LEE, J. M., BOYLE, E. A., SUCI-NURHATI, I., PFEIFFER, M., MELTZNER, A. J. & SUWARGADI, B. 2014. Coral-based history of lead and lead isotopes of the surface Indian Ocean since the mid-20th century. Earth and Planetary Science Letters, 398, 37-47.

LINSLEY, B. K., DUNBAR, R. B., DASSIE, E. P., TANGRI, N., WU, H. C., BRENNER, L. D. & WELLINGTON, G. M. 2019. Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications. Nature Communications, 10, 2056.

LIVINGSTON, H. D. & THOMPSON, G. 1971. Trace element concentrations in some modern corals. Limnology and Oceanography, 16(5), 786-796.

LO-IACONO, C., SAVINI, A. & BASSO, D. 2018. Cold-water carbonate bioconstructions. In: MICALLEF, A., KRASTEL, S. & SAVINI, A. (eds.). Submarine geomorphology. Cham: Springer, pp. 425-455.

MALY, M., SCHATTNER, U., LOBO, F. J., RAMOS, R. B., DIAS, R. J., COUTO, D. M., SUMIDA, P. Y. & MAHIQUES, M. M. 2019. The Alpha Crucis Carbonate Ridge (ACCR): discovery of a giant ring-shaped carbonate complex on the SW Atlantic margin. Scientific Reports, 9(1), 18697.

MANGINI, A., GODOY, J. M., GODOY, M. L., KOWSMANN, R., SANTOS, G. M., RUCKELSHAUSEN, M., SCHROEDER-RITZRAU, A. & WACKER, L. 2010. Deep sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the Younger Dryas. Earth and Planetary Science Letters, 293, 269-276.

MONTAGNA, P., MCCULLOCH, M., DOUVILLE, E., LÓPEZ CORREA, M., TROTTER, J., RODOLFO-METALPA, R., DISSARD, D., FERRIER-PAGÈS, C., FRANK, N., FREIWALD, A., GOLDSTEIN, S., MAZZOLI, C., REYNAUD, S., RÜGGEBERG, A., RUSSO, S. & TAVIANI, M. 2014. Li/Mg systematics in scleractinian corals: calibration of the thermometer. Geochimica et Cosmochimica Acta, 132, 288-310.

MONTAGNA, P., MCCULLOCH, M., TAVIANI, M., MAZZOLI, C. & VENDRELL, B. 2006. Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Science, 312(5781), 1788-1791.

MONTAGNA, P., MCCULLOCH, M., TAVIANI, M., REMIA, A. & ROUSE, G. 2005. High-resolution trace and minor element compositions in deep-water scleractinian corals (Desmophyllum dianthus) from the Mediterranean Sea and the Great Australian Bight. In: FREIWALD, A. & ROBERTS, J. M. (eds.). Cold-water corals and ecosystems. Berlin: Springer-Verlag, pp. 1109-1126.

MONTAGNA, P. & TAVIANI, M. 2019. Mediterranean cold-water corals as paleoclimate archives. In: OA-ICC (Ocean Acification - International Coordination Center) (eds.). Mediterranean cold-water corals: past, present and future. Cham: Springer, pp. 95-108.

O’REILLY, B. M., READMAN, P. W., SHANNON, P. M. & JACOB, A. W. B. 2003. A model for the development of a carbonate mound population in the Rockall Trough based on deep-towed sidescan sonar data. Marine Geology, 198, 55-66.

PIRES, D. O. 2007. The azooxanthellate coral fauna of Brazil. Bulletin of Marine Science, 81, 265-272.

PIRLET, H., COLIN, C., THIERENS, M., LATRUWE, K., VAN ROOIJ, D., FOUBERT, A., FRANK, N., BLAMART, D., HUVENNE, V. A. I., SWENNEN, R., VANHAECKE, F. & HENRIET, J. P. 2011. The importance of the terrigenous fraction within a cold-water coral mound: a case study. Marine Geology, 282(1-2), 13-25.

RADDATZ, J., LIEBETRAU, V., RÜGGEBERG, A., HATHORNE, E., KRABBENHÖFT, A., EISENHAUER, A., BÖHM, F., VOLLSTAEDT, H., FIETZKE, J., LÓPEZ CORREA, M., FREIWALD, A. & DULLO, W. C. 2013. Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa. Chemical Geology, 352, 143-152.

RADDATZ, J., TITSCHACK, J., FRANK, N., FREIWALD, A., CONFORTI, A., OSBORNE, A., SKORNITZKE, S., STILLER, W., RÜGGEBERG, A., VOIGT, S., ALBUQUERQUE, A. L. S., VERTINO, A., SCHRÖDER-RITZRAU, A. & BAHR, A. 2019. Solenosmilia variabilis-bearing cold-water coral mounds off Brazil. Coral Reefs, 39(1), 69-83.

RAIMUNDO, J., VALE, C., CAETANO, M., ANES, B., CARREIRO-SILVA, M., MARTINS, I., MATOS, V. D. & PORTEIRO, F. M. 2013. Element concentrations in cold-water gorgonians and black coral from Azores region. Deep Sea Research Part II: Topical Studies in Oceanography, 98, 129-136.

ROBERTS, J. M., WHEELER, A. J. & FREIWALD, A. 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science, 312(5773), 543-547.

ROBINSON, L. F., ADKINS, J. F., FRANK, N., GAGNON, A. C., PROUTY, N. G., BRENDAN ROARK, E. & FLIERDT, T. V. 2014. The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography. Deep Sea Research Part II: Topical Studies in Oceanography, 99, 184-198.

ROLLION-BARD, C., BLAMART, D., CUIF, J. P. & DAUPHIN, Y. 2010. In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: re-examination of the current geochemical models of biomineralization. Geochimica et Cosmochimica Acta, 74, 1338-1349.

RÜGGEBERG, A., FIETZKE, J., LIEBETRAU, V., EISENHAUER, A., DULLO, W. C. & FREIWALD, A. 2008. Stable strontium isotopes (δ88/86Sr) in cold-water corals - a new proxy for reconstruction of intermediate ocean water temperatures. Earth and Planetary Science Letters, 269, 570-575.

SAHA, N., WEBB, G. E. & ZHAO, J. X. 2016. Coral skeletal geochemistry as a monitor of inshore water quality. Science of the Total Environment, 566-567, 652-684.

SCHRÖDER-RITZRAU, A., FREIWALD, A. & MANGINI, A. 2005. U/Th-dating of deep-water corals from the eastern North Atlantic and the western Mediterranean Sea. In: FREIWALD, A. & ROBERTS, J. M. (eds.). Cold-water corals and ecosystems. Berlin: Springer, pp. 157-172.

SMITH, J. E., SCHWARCZ, H. P. & RISK, M. J. 2002. Patterns of isotopic disequilibria in azooxanthellate coral skeletons. Hydrobiologia, 471, 111-115.

SMITH, J. E., SCHWARCZ, H. P., RISK, M. J., MCCONNAUGHEY, T. A. & KELLER, N. 2000. Paleotemperatures from deep-sea corals: overcoming’ vital effects’. Palaios, 15, 25-32.

SPOONER, P. T., CHEN, T., ROBINSON, L. F. & COATH, C. D. 2016. Rapid uranium-series age screening of carbonates by laser ablation mass spectrometry. Quaternary Geochronology, 31, 28-39.

STEWART, J. A., ROBINSON, L. F., DAY, R. D., STRAWSON, I., BURKE, A., RAE, J. W. B., SPOONER, P. T., SAMPERIZ, A., ETNOYER, P. J., WILLIAMS, B., PAYTAN, A., LENG, M. J., HÄUSSERMANN, V., WICKES, L. N., BRATT, R. & PRYER, H. 2020. Refining trace metal temperature proxies in cold-water scleractinian and stylasterid corals. Earth and Planetary Science Letters, 545, 116412.

STRAMMA, L. & SCHOTT, F. 1999. The mean flow field of the tropical Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 46, 279-303.

SUMIDA, P. Y. G., YOSHINAGA, M. Y., MADUREIRA, L. A. S. P. & HOVLAND, M. 2004. Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Marine Geology, 207, 159-167.

TITSCHACK, J., THIERENS, M., DORSCHEL, B., SCHULBERT, C., FREIWALD, A., KANO, A., TAKASHIMA, C., KAWAGOE, N. & LI, X. 2009. Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307). Marine Geology, 259, 36-46.

TOLIAN, R., MAKFSOOSIB, A. H. & BUSHEHRIC, P. K. 2020. Investigation of heavy metals in the ballast water of ship tanks after and before the implementation of the ballast water convention: Bushehr Port, Persian Gulf. Marine Pollution Bulletin, 157, 111378.

TREVIZANI, T. H., FIGUEIRA, R. C., RIBEIRO, A. P., THEOPHILO, C. Y., MAJER, A. P., PETTI, M. A., CORBISIER, T. N. & MONTONE, R. C. 2016. Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 106(1-2), 366-371.

VAN DER SCHYFF, V., KWET YIVE, N. S. C. & BOUWMAN, H. 2020. Metal concentrations in corals from South Africa and the Mascarene Basin: a first assessment for the Western Indian Ocean. Chemosphere, 239, 124784.

VIANA, A. R., FAUGERES, J. C., KOWSMANN, R. O., LIMA, J. A. M., CADDAH, L. F. G. & RIZZO, J. G. 1998. Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sedimentary Geology, 115(1-4), 133-157.

YU, K. F., ZHAO, J. X., WEI, G. J., CHENG, X. R., CHEN, T. G.., FELIS, T., WANG, P. X. & LIU, T. S. 2005. δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators. Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 57-73.

YU, K. F., ZHAO, J. X., WEI, G. J., CHENG, X. R. & WANG, P. X. 2005. Mid-late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea. Global and Planetary Change, 47(2-4), 301-316.

Downloads

Published

2022-11-23

How to Cite

Chemical characterization of deep-sea corals from the continental slope of Santos Basin (southeastern Brazilian upper margin). (2022). Ocean and Coastal Research, 70(Suppl. 2). https://doi.org/10.1590/