Transition in urban stormwater management infrastructures: a landscape strategy for climage changing

Authors

  • Newton Celio Becker Moura Universidade de São Paulo
  • Paulo Renato Mesquita Pellegrino Universidade de São Paulo
  • José Rodolfo Scarati Martins Universidade de São Paulo

DOI:

https://doi.org/10.11606/issn.2359-5361.v0i34p107-128

Keywords:

Climate change. Urban drainage. Best Management Practices. São Paulo.

Abstract

Global climate models regarding the predicted scenarios of Greenhouse Gases (GHG) emissions, forecast a general increase in intensity and frequency of extreme rainfalls. Advanced studies in regional and local scales attest this intensification with greater spatial and temporal precision. The increase in rainfall associated with urban sprawl and more impervious surfaces, will lead to unprecedented impacts on drainage infrastructures. Facing the need of adaption to this future scenario, cities have the opportunity to perform an infrastructural transition when adopting stormwater Best Management Practices (BMPs) as a sustainable, resilient and landscape friendly solution. This paper presents a qualitative and quantitative comparison between BMPs techniques and usual detention reservoirs as flow control strategies. Regarding a case study urban watershed in Greater São Paulo, where two reservoirs with total volume of 19.200 m3 were built, porous sidewalks and bioretention elements have been located in the contribution area within this basin. The retention volume of these proposed techniques considering their average porosity corresponds to 42% of the reservoirs capacity. It is then confirmed stormwater BMPs viability and suitability as alternatives to adapting cities to climate change, but their efficiency relies on a design that takes into account the specific local environment and landscape. 

Downloads

Download data is not yet available.

Author Biographies

  • Newton Celio Becker Moura, Universidade de São Paulo

    Arquiteto pela Universidade Federal do Ceará (UFC). Doutorando na Faculdade de Arquitetura e
    Urbanismo da Universidade de São Paulo (FAUUSP). 

  • Paulo Renato Mesquita Pellegrino, Universidade de São Paulo

    Arquiteto pela Pontifícia Universidade Católica de Campinas (PUC-Campinas). Mestre, doutor e pós-doutor pela Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo (FAUUSP). 

  • José Rodolfo Scarati Martins, Universidade de São Paulo

    Engenheiro pela Escola Politécnica da Universidade de São Paulo (Poli/USP). Mestre e doutor em Engenharia Civil. Departamento de Engenharia Hidráulica e Ambiental da Poli/USP.

References

BRUNETTI, Michele et al. Temperature, precipitation and extreme events during the last century in Italy. Global and Planetary Change, vol. 40, 2004, p. 141-149.

CALTHORPE, Peter. Urbanism in the age of climate change. Washington D. C.: Island Press, 2010.

CHANGNON, S. A.; WESTCOTT, N. E. Heavy rainstorms in Chicago: increasing frequency, altered impacts, and

future implications. Journal of American Water Resources Association, vol. 38, issue 5, October, 2002, p. 1467-1475.

CITY OF PORTLAND. Stormwater Management Manual. Revision 4, August 1, 2008. Disponível em: http://www.portlandonline.com/bes/index.cfm?c=47952. Acesso em: abr. 2011.

COHEN, Joel E. Human population: the next half century. Science Magazine, vol. 302, p. 1172-1175.

CORMIER, Nathaniel S.; PELLEGRINO, Paulo Renato Mesquita. Infraestrutura verde: uma estratégia paisagística para água urbana. Paisagem e Ambiente: ensaios, n. 25, 2008, São Paulo: FAUUSP, p. 127-142.

CUBASCH, J.T. et al. Projections of future climate change. In: Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, U.K., p. 525-582.

DEBUSK, K. M.; WYNN, T. M. Stormwater Bioretention for Runoff Quality and Quantity Mitigation. Journal of Environmental Engineering, March, 2011, p. 1-27.

DEL GENIO, Anthony D.; LACIS, Andrew A.; RUEDY, Reto A. Simulations of the effect of a warmer climate on atmospheric humidity. Nature, vol. 351, May, 1991, p. 382-385.

DENAULT, Catherine; MILLAR, Robert G.; LENCE, Barbara J. Assessment of Possible Impacts of Climate Change in an Urban Catchment. Journal of American Water Resources Association, June, 2006, p. 685-697.

DIETZ, Michael E. Low impact development practices: a review of current research and recommendations for future directions. In: Water Air Soil Pollut, vol. 186, 2007, p. 351-363.

DOUGLAS, Ian et al. Unjust waters: climate change, flooding and the urban poor in Africa. In: Environment and Urbanization, 2008, p. 120-187.

DRAMSTAD, Wenche E.; OLSON, James D.; FORMAN, Richard, T.T . Island Press, Washington, DC.: Harvard University Graduate School of Design, 1996. 80 p.

DUFEK, A. S.; AMBRIZZI, T. Precipitation variability in São Paulo State, Brazil. Theoretical and Applied Climatology, vol. 93, 2008, p. 167-178.

EMORI, S; BROWN, S. J. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, vol. 32, L17706, p. 1-5.

FARAM, M. G. et al. Appropriate drainage systems for a changing climate. Engineering Sustainability, vol. 163, June 2010, issue ES2, p. 107-116.

FREI, Christoph et al. Heavy precipitation processes in a warmer climate. Geophysical Research Letters, vol. 25, n. 9, May, 1998, p. 1431-1434.

GRIMM, Alice M. Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stochastic Environmental Research and Risk Assessment, vol. 25, 2011, p. 537-554.

GUO, Yping M. Updating rainfall IDF relationships to maintain urban drainage design standards. Journal of Hydrologic Engineering, September/October, 2006, p. 506-509.

HA, Simon J.; STENSTROM, Michael K. Predictive modeling of storm-water runoff quantity and quality for a large urban watershed. Journal of Environmental Engineering, September, 2008, p. 703-701.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Summary for Policymakers. Genebra: IPCC/ UNEP/WMO, 2007.

MAILHOT, Alain; DUCHESNE, Sophie. Design criteria of urban drainage infrastructures under climate change. Journal of Water Resources, Planning and Management. March/April, 2010, p. 201-208.

MARENGO, J. A. et al. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, vol. 29, 2009. p. 2241-2255.

MEEHL, Gerald. A. et al. Global climate projections. In: Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, U.K, p. 749-845.

NASCIMENTO, N. O.; BAPTISTA, M. B. Técnicas compensatórias em águas pluviais. In: RIGHETTO, Antonio Marozzi (Coord.). Manejo de águas pluviais. Rio de Janeiro: ABES, Projeto PROSAB, 2009. 398 p.

NIEMCZYNOWICZ, Janusz. Impact of the greenhouse effect on sewerage systems - Lund case study. Journal of Hydrological Sciences, vol. 34, p. 651-666.

NOBRE, et al. Vulnerabilidade das megacidades brasileiras às mudanças climáticas: Região Metropolitana de São Paulo – Sumário Executivo. INPE / UNICAMP / USP / IPT / UNESP. Julho, 2010. Disponível em: http://www.inpe.br/noticias/arquivos/pdf/megacidades.pdf. Acesso em: mai. 2011.

NOVOTNY, Vladimir; AHERN, Jack; BROWN, Paul. Water centric sustainable communities: planning, retrofitting, and building the next urban environment. New Jersey: John Wiley Inc. 2010. 624 p.

PINTO, Liliane L. A. O desempenho de pavimentos porosos como medida mitigadora da impermeabilização do solo urbano. 2011. 255 f. Tese (Doutorado em Engenharia Hidráulica) – Escola Politécnica da Universidade de São Paulo, São Paulo, 2011.

PHD.Qualidade da àgua em reservatórios cheios urbanos. São Paulo: Departamento de Engenharia Hidráulica e Sanitária-Escola Politécnica-USP, 2008.

RE, Mariano; BARROS, Vicente Ricardo. Extreme rainfalls in SE South America. Climatic Change, vol. 96, 2009, p. 119-136.

RILEY, Ann L. Restoring streams in cities: a guide for planners, policymakers, and citizens. Washington D.C.: Island Press, 1998.

ROESNER, Larry A., BLEDSOE, Brian P.; BRASHEAR, Robert W. Are Best Management Practices really environmentally friendly? Journal of Water Resources Planning and Management, May/June 2001, p. 150-154.

SERVIÇO AUTÔNOMO MUNICIPAL DE ÁGUA E SANEAMENTO AMBIENTAL (SAMASA). Delimitação da Bacia de Contribuição do Reservatório Bom Pastor. Santo André: Departamento de Planejamento e Obras, 2006.

SCHOLZ, Miklas; YANG, Qinli. Guidance on variables characterising water bodies including sustainable flood retention basins. Landscape and Urban Planning, 98, 2010, p. 190-199.

VIRGILIS, Afonso L. C. Procedimentos de projeto e execução de pavimentos permeáveis visando retenção e amortecimento de picos de cheias. 2009. 191 p. Dissertação (Mestrado em Engenharia de Transportes) – Escola Politécnica da Universidade de São Paulo, São Paulo, 2009.

WATERS, Darren et al. Adaptation of a Storm Drainage System to Accommodate Increased Rainfall Resulting from Climate Change. Journal of Environmental Planning and Management, vol. 46: 5, p. 755-770.

WEISS, Peter T. Weiss; GULLIVER, John S.; ERICKSON, Andrew J. Cost and pollutant removal of storm-water treatment practices. Journal of Water Resources Planning and Management, May/June 2007, p. 218-229.

WILBY, R. L. A review of climate change impacts on the built environment. Built Environment, vol. 33. n. 1, 2007, p. 31-45.

Published

2014-12-07

Issue

Section

Ambiente

How to Cite

Moura, N. C. B., Pellegrino, P. R. M., & Martins, J. R. S. (2014). Transition in urban stormwater management infrastructures: a landscape strategy for climage changing. Paisagem E Ambiente, 34, 107-128. https://doi.org/10.11606/issn.2359-5361.v0i34p107-128