The working memory as predictor of performance in arithmetic of Brazilian students

Authors

DOI:

https://doi.org/10.1590/1982-4327e3119

Keywords:

Working memory, Mathematics, Children, Academic achievement

Abstract

Working memory (WM) is a predictor of school learning. This study aimed to investigate the predictive power of verbal and non-verbal working memory (WM) on students’ performance in arithmetic. 126 children between 6 and 11 years old participated in the research. The instruments were: School Performance Test, Raven’s Colored Progressive Matrices, Corsi Block-tapping Test, and Digits Subtest. The results showed strong and positive correlations of school performance with fluid intelligence r = 0.64, with verbal WM and non-verbal WM, both with r = 0.51 (p < 0.001). After multiple linear regression, it was found that the performance in visuospatial WM was a strong predictor for arithmetic, an effect not found for reading. The regression showed that WM explains 38% of the variance for arithmetic. It is concluded that WM has an expressive contribution to school performance, being more specific the contributions of visuospatial WM for arithmetic.

Downloads

Download data is not yet available.

Author Biographies

  • Fernanda David Vieira, Universidade Federal da Bahia

    Universidade Federal da Bahia, Vitória da Conquista-BA, Brazil.

  • Denise Oliveira Ribeiro, Universidade Federal de Minas Gerais

    Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil

  • Heitor Blesa Farias, Universidade Federal de Minas Gerais

    Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil

  • Patricia Martins Freitas, Universidade Federal da Bahia

    Universidade Federal da Bahia, Vitória da Conquista-BA, Brazil

References

Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. doi:10.1016/j.jecp.2009.11.003

Angelini, A. L., Alves, I. C. B., Custódio, E. M., Duarte, W. F., & Duarte, J. L. M. (1999). Matrizes progressivas coloridas de RAVEN: Escala especial: Manual [Raven’s coloured progressive matrices: Special scale: Handbook]. São Paulo, SP: CETEPP.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York, NY: Academic Press.

Cragg, L., Richardson, S., Hubber, P. J., Keeble, S., & Gilmore, C. (2017). When is working memory important for arithmetic? The impact of strategy and age. PloS One, 12(12), e0188693. doi:10.1371/journal.pone.0188693

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42. doi:10.1016/0010-0277(92)90049-n

Dorneles, B. V. (2019). Mathematical learning and its difficulties in Latin-American countries. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International handbook of mathematical learning difficulties: From the laboratory to the classroom (pp. 201-212). Cham, Switzerland: Springer.

Fenesi, B., Sana, F., Kim, J. A., & Shore, D. I. (2015). Reconceptualizing working memory in educational research. Educational Psychology Review, 27(2), 333-351. doi:10.1007/s10648-014-9286-y

Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29-44. doi:10.1016/j.edurev.2013.05.003

Fritz, A., Haase, V. G., & Räsänen, P. (2019). International handbook of mathematical learning difficulties: From the laboratory to the classroom. Cham, Switzerland: Springer.

Fürst, A. J., & Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory & Cognition, 28(5), 774-782. doi:10.3758/BF03198412

Gathercole, S. E., & Alloway, T. P. (2004). Working memory and the classroom learning. Dyslexia Review, 15(3), 4-9. Retrieved from https://www.researchgate.net/publication/254392644_Working_memory_and_classroom_learning

Geary, D. C. (2010). Mathematical disabilities: Reflections on cognitive, neuropsychological, and genetic components. Learning and Individual Differences, 20(2), 130-133. doi:10.1016/j.lindif.2009.10.008

Gerardi, K., Goette, L., & Meier, S. (2013). Numerical ability predicts mortgage default. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11267-11271. doi:10.1073/pnas.1220568110

Gonçalves, H. A., Viapiana, V. F., Sartori, M. S., Giacomoni, C. H., Stein, L. M., & Fonseca, R. P. (2017). Funções executivas predizem o processamento de habilidades básicas de leitura, escrita e matemática? [Executive functions predict the processing of basic reading, writing, and mathematics skills?]. Neuropsicologia Latinoamericana, 9(3), 42-54. Retrieved from https://www.neuropsicolatina.org/index.php/Neuropsicologia_Latinoamericana/article/view/393

Haase, V. G., Júlio-Costa, A., Lopes-Silva, J. B., Starling-Alves, I., Antunes, A. M., Pinheiro-Chagas, P., & Wood, G. (2014). Contributions from specific and general factors to unique deficits: Two cases of mathematics learning difficulties. Frontiers in Psychology, 5, 102. doi:10.3389/fpsyg.2014.00102

Hitch, G. J., Towse, J. N., & Hutton, U. (2011). What limits children’s working memory span? Theoretical accounts and applications for scholastic development. Journal of Experimental Psychology: General, 130(2), 184-198. doi:10.1037//0096-3445.130.2.184

Holmes, J., Adams, J. W., & Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children’s mathematical skills. European Journal of Cognitive Psychology, 20(2), 272-289. doi:10.1080/09541440701612702

Imbo, I., & LeFevre, J. (2010). The role of phonological and visual working memory in complex arithmetic for Chinese- and Canadian-educated adults. Memory & Cognition, 38(2), 176-185. doi:10.3758/MC.38.2.176

Kellogg, R. T., Turner, C. E., Whiteford, A. P., & Mertens, A. (2016). The role of working memory in planning and generating written sentences. Journal of Writing Research, 7(3), 397-416. doi:10.17239/jowr-2016.07.03.04

Layes, S., Lalonde, R., Bouakkaz, Y., & Rebai, M. (2018). Effectiveness of working memory training among children with dyscalculia: Evidence for transfer effects on mathematical achievement-a pilot study. Cognitive Processing, 19(3), 375-385. doi:10.1007/s10339-017-0853-2

Lopes-Silva, J. B., Moura, R., Júlio-Costa, A., Haase, V. G., & Wood, G. (2014). Phonemic awareness as a pathway to number transcoding. Frontiers in Psychology, 5, 13. doi:10.3389/fpsyg.2014.00013

Lopes Silva, J. B., Moura, R. J., Wood, G., & Haase, V. G. (2015). Processamento fonológico e desempenho em aritmética: Uma revisão da relevância para as dificuldades de aprendizagem [Phonological processing and mathematic performance: A review of the relevance to learning disabilities]. Temas em Psicologia, 23(1), 157-173. Retrieved from http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1413-389X2015000100012&lng=pt&tlng=pt

Mammarella, I. C., Caviola, S., Giofrè, D., & Szűcs, D. (2018). The underlying structure of visuospatial working memory in children with mathematical learning disability. The British Journal of Developmental Psychology, 36(2), 220-235. doi:10.1111/bjdp.12202

Menon, V. (2016). Working memory in children’s math learning and its disruption in dyscalculia. Current Opinion in Behavioral Sciences, 10, 125-132. doi:10.1016/j.cobeha.2016.05.014

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. (2019). Relatório Brasil no PISA 2018: Versão preliminar [Brazil Report at PISA 2018: Preliminary version]. Brasília, DF: INEP/MEC. Retrieved from https://download.inep.gov.br/acoes_internacionais/pisa/documentos/2019/relatorio_PISA_2018_preliminar.pdf

Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14-20. doi:10.1016/j.cobeha.2016.04.006

Morosanova, V. I., Fomina, T. G., Kovas, Y., & Bogdanova, O. Y. (2016). Cognitive and regulatory characteristics and mathematical performance in high school students. Personality and Individual Differences, 90, 177-186. doi:10.1016/j.paid.2015.10.034

Moura, R., Wood, G., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., & Haase, V. G. (2013). Transcoding abilities in typical and atypical mathematics achievers: The role of working memory and procedural and lexical competencies. Journal of Experimental Child Psychology, 116(3), 707-727. doi:10.1016/j.jecp.2013.07.008

Ofen, N., Yu, Q., & Chen, Z. (2016). Memory and the developing brain: Are insights from cognitive neuroscience applicable to education? Current Opinion in Behavioral Sciences, 10, 81-88. doi:10.1016/j.cobeha.2016.05.010

Orsini, A., Simonetta, S., & Marmorato, M. S. (2004). Corsi’s block-tapping test: Some characteristics of the spatial path which influence memory. Perceptual and Motor Skills, 98(2), 382-388. doi:10.2466/pms.98.2.382-388

Peijnenborgh, J. C., Hurks, P. M., Aldenkamp, A. P., Vles, J. S., & Hendriksen, J. G. (2016). Efficacy of working memory training in children and adolescents with learning disabilities: A review study and meta-analysis. Neuropsychological Rehabilitation, 26(5-6), 645-672. doi:10.1080/09602011.2015.1026356

Peng, P., Barnes, M., Wang, C., Wang, W., Li, S., Swanson, H. L., …Tao, S. (2018). A meta-analysis on the relation between reading and working memory. Psychological Bulletin, 144(1), 48-76. doi:10.1037/bul0000124

Rittle-Johnson, B., Zippert, E. L., & Boice, K. L. (2018). The roles of patterning and spatial skills in early mathematics development. Early Childhood Research Quarterly, 46, 166-178. doi:10.1016/j.ecresq.2018.03.006

Sala, G., & Gobet, F. (2017). Working memory training in typically developing children: A meta-analysis of the available evidence. Developmental Psychology, 53(4), 671-685. doi:10.1037/dev0000265

Sánchez-Pérez, N., Castillo, A., López-López, J. A., Pina, V., Puga, J. L., Campoy, G., ... Fuentes, L. J. (2018). Computer-based training in math and working memory improves cognitive skills and academic achievement in primary school children: Behavioral results. Frontiers in Psychology, 8, 2327. doi:10.3389/fpsyg.2017.02327

Schwaighofer, M., Fischer, F., & Bühner, M. (2015). Does working memory training transfer? A meta-analysis including training conditions as moderators. Educational Psychologist, 50(2), 138-166. doi:10.1080/00461520.2015.1036274

Singh, K. A., Gignac, G. E., Brydges, C. R., & Ecker, U. K. H. (2018). Working memory capacity mediates the relationship between removal and fluid intelligence. Journal of Memory and Language, 101, 18-36. doi:10.1016/j.jml.2018.03.002

Stein, L. M. (1994). TDE: Teste de Desempenho Escolar: Manual para aplicação e interpretação [TDE: School Performance Test: Manual for application and interpretation]. São Paulo, SP: Casa do Psicólogo.

Swanson, H. L. (2016). Word problem solving, working memory and serious math difficulties: Do cognitive strategies really make a difference? Journal of Applied Research in Memory and Cognition, 5(4), 368-383. doi:10.1016/j.jarmac.2016.04.012

Van de Weijer-Bergsma, E., Kroesbergen, E. H., & van Luit, J. E. H. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory & Cognition, 43(3), 367-378. doi:10.3758/s13421-014-0480-4

Wechsler, D. (2002). WISC-III: Escala de Inteligência Wechsler para crianças: Manual [WISC- III: Wechsler Intelligence Scale for Children: Handbook] (V. L. M. Figueiredo, Trans., 3rd ed.). São Paulo, SP: Casa do Psicólogo.

Downloads

Published

2021-12-31

Issue

Section

School and Educational Psychology

How to Cite

Vieira, F. D., Ribeiro, D. O., Farias, H. B., & Freitas, P. M. (2021). The working memory as predictor of performance in arithmetic of Brazilian students. Paidéia (Ribeirão Preto), 31, e3119. https://doi.org/10.1590/1982-4327e3119