Assessment of weather types analysis through machine learning techinques

Authors

DOI:

https://doi.org/10.11606/eISSN.2236-2878.rdg.2025.225202

Keywords:

Principal components, Dynamic climatology, Bigdata, Rhythmic analysis

Abstract

The present research proposes a methodological technique for the Synoptic Analysis of the Types of Weather in a given location based on Machine Learning models. For this study, climatic data of eight variables were collected on a daily scale for the city of Natal, Rio Grande do Norte, northeastern Brazil, for the year 2022 as input. A Principal Component Analysis was carried out with the organized dataset, which, the eight input variables were combined into one. After that, the values of this single variable underwent a clustering process, originating clusters that denote the different types of weather that acted in the analyzed location. By way of comparison, a synoptic analysis was performed using the Rhythmic Analysis technique for the same dataset. The model results indicated the occurrence of four types of meteorological weather in Natal during the analyzed period. Although it presented inconsistencies with Rhythmic Analysis, the automated proposal proved to be satisfactory given the ease of application and possibility of application in large volume datasets. In times of climate change, large volumes of meteorological data enable new ways of analyzing the present climate and interpreting its interactions with geographic space.

Downloads

Download data is not yet available.

References

BESSAH, E.; AMPONSAH, W.; ANSAH, S. O.; AFRIFA, A.; YAHAYA, B., WEMEGAH, C. S.; TANU, M.; AMEKUDZI, L. K.; AGYARE, W. A. Climatic zoning of Ghana using selected meteorological variables for the period 1976–2018. Meteorological Applications, 29(1), e2049, 2022.

CUNHA, D. G. F.; VECCHIA, F. As Abordagens Clássica e Dinâmica de Clima: Uma Revisão Bibliográfica Aplicada ao Tema da Compreensão da Realidade Climática. Ciência e Natura, v. 29, n. 1, p. 137–149, 2007

DENTON, S. R.; BARNES, B. V., An Ecological Climatic Classification of Michigan: A Quantitative Approach, Forest Science, Volume 34, Issue 1, Pages 119–138, 1988

DUBREUIL V.; FANTE K.P.; PLANCHON O.; SANT'ANNA NETO J.L., Climate change evidence in Brazil from Köppen's climate annual types frequency. Int J Climatol. V.39, 39, p. 1446–1456, 2019

FONTÃO, P. A. B.; ZAVATINNI, J. A.; SHERIDAN, S. C.; ARMOND, N. B. Gênese Das Chuvas Em São Paulo (Sp): Estudo Comparativo entre a “Spatial Synoptic Classification” e a "Análise Rítmica Em Climatologia". Revista Brasileira de Climatologia, v. 23, 2021

GÜLAGIZ, F. K.; SAHIN, S., Comparison of hierarchical and non-hierarchical clustering algorithms. International Journal of Computer Engineering and Information Technology, 9 (1), 6-14, 2017

KOJIMA, C., Detailed Climatic Classification of Tohoku Disrict by Principal Component Analysis, Journal of Agricultural Meteorology, Volume 29, Issue 3, Pages 165-172, 1973

NICHOLSON,J.; BRYANT,D. G., Climatic zones of insular Newfoundland : a principal component analysis, Canadian Forestry Service, No. 1299,iv,13 p,1972

MACHADO, L. A., Classificação Climática Para Minas Gerais Por Meio Do Método De Agrupamento Não Hierárquico De K-Means. Cadernos do Leste, [S. l.], v. 14, n. 14, 2014

MCGOVERN, A.; SUPINIE, T.; GAGNE, J.D.; TROUTMAN, N.; COLLIER, M.; BROWN, R.; BASARA, J.; WILLIANS, J., Understanding Severe Weather Processes Through Spatiotemporal Relational Random Forests, In: CONFERENCE ON INTELIGENT DATA UNDERSTANDING, 2010.

MONTEIRO, C. A. F. A análise rítmica em climatologia: problemas da atualidade climática em São Paulo e achegas para um programa de trabalho. Climatologia, n. 01, p. 01-21, 1971

NOVAIS, G.T.; MACHADO, L.A., Os climas do Brasil: segundo a classificação climática de Novais. Revista Brasileira de Climatologia, [S. l.], v. 32, n. 19, p. 1–39, 2023

SANT’ANNA NETO, J. L. Medir o tempo, ler, interpretar e sentir o clima: uma climatologia a serviço do entendimento das relações entre os homens e seus lugares, entre as sociedades e seus territórios. In: SILVA, C. A.; FIALHO, E. S.; STEINKE, E. T. Experimentos em Climatologia Geográfica. Dourados-MS: UFGD, 2014. p. 23-32

SHERIDAN, S. C. The redevelopment of a weather‐type classification scheme for North America. International Journal of Climatology, v. 22, n. 1, p. 51-68, 2002

WANDERLEY, L. S. A.; NÓBREGA, R. S. Desenvolvimento de um novo sistema de classificação climática com base na metodologia dos tipos de tempo sinóticos para a região Nordeste do Brasil. Geousp, v. 26, n. 1, e-175243, abr. 2022

ZAVATINNI, J. A. A Climatologia Geográfica Brasileira, o Enfoque Dinâmico e a Noção de Ritmo Climático. Geografia (Rio Claro), v. 23, n. 3, p. 5-24, 1998

ZHANG,X.; MAGGIONI,V.;HOUSER,P.;XUE,Y.;MEI, Y.,The impact of weather condition and social activity on COVID-19 transmission in the United States, Journal of Environmental Management, Volume 302, Part B, 2022,

ZHOU, K.; ZHENG, Y.; LI, B., Forecasting Different Types of Convective Weather: A Deep Learning Approach. J Meteorol Res 33, 797–809, 2019.

Published

2025-05-24

Issue

Section

Artigos

How to Cite

Castelhano, F. J., Medeiros, D. C., & Oliveira, L. L. de . (2025). Assessment of weather types analysis through machine learning techinques. Revista Do Departamento De Geografia, 45, e225202 . https://doi.org/10.11606/eISSN.2236-2878.rdg.2025.225202