Comparison between laser diffraction and pipette methods for grain size analysis of fluvial sediments from the Amazon Basin

Authors

DOI:

https://doi.org/10.11606/eISSN.2236-2878.rdg.2025.232770

Keywords:

Negro River, Mariuá Archipelago, Grain Size Analysis, Large Amazon Rivers

Abstract

Grain size analysis in river systems is important for analyzing the processes of erosion and deposition of flood plains and river islands, as well as contributing to paleohydrological and paleoclimatic studies. At present, sedimentation and laser diffraction methods are used to determine the grain size of soils and sediments. Both methods have limitations, especially when dealing with fine sediments, where differences in the sphericity and shape of the particles can influence the results. The aim of this study was to compare the results of particle size analysis using different methods on sediment samples collected in river environments located in the Amazon basin. Eleven sediment samples were evaluated in seven sampling sessions during the low water period in an anabranching stretch of the middle Negro River (Mariuá Archipelago). The samples were taken from different fluvial units (islands, floodplains, and sandbars). The results indicate a good correlation between the methods, with a high Pearson's linear correlation coefficient, low variance and few differences between the mean grain size values, as well as low values for mean error and root mean square error. The coefficient of determination was moderate, particularly on the islands of the Mariuá archipelago. The greatest errors occurred in fine sediments, where laser diffraction proved to overestimate the silt fraction and underestimate the clay fraction, probably due to the low sphericity of the particles. The textural analysis showed discrepancies in the grain size conventions, indicating that the choice of method can influence interpretations in specific river environments.

Downloads

Download data is not yet available.

References

ALMEIDA, B. G.; DONAGEMMA, G. K.; RUIZ, H. A.; BRAIDA, J. A.; VIANA, J. H. M.; REICHERT, J. M. M.; OLIVEIRA, L. B.; CEDDIA, M. B.; WADT, P. S.; FERNANDES, R. B. A.; PASSOS, R. R.; DECHEN, S. C. F.; KLEIN, V. A.; TEIXEIRA, W. G. Padronização de Métodos para Análise Granulométrica no Brasil. Comunicado Técnico, Rio de Janeiro, 2012.

ALVES, N. S. Mapeamento Hidromorfodinâmico do Complexo Fluvial de Anavilhanas: Contribuição aos Estudos de Geomorfologia Fluvial de Rios Amazônicos. Tese de Doutorado (Universidade de São Paulo - USP) São Paulo, Brasil, 2013.

BANDEIRA, I. C. N.; ADAMY, A.; ANDRETTA, E. R.; CONCEIÇÃO, R. A. C.; ANDRADE, M.M.N. Terras caídas: Fluvial erosion or distinct phenomenon in the Amazon?. Environmental Earth Sciences, v. 77, n. 222, 2018.

BIEGANOWSKI, A.; RYZAK, M.; SOCHAN, A.; BARNA, G.; HERN´ADI, H.; BECZEK, M.; POLAKOWSKI, C.; MAKO, A. Laser diffractometry in the measurements of soil and sediment particle size distribution. Adv. Agron. v. 151, 215–279, 2018. https://doi.org/ 10.1016/bs.agron.2018.04.003.

CALLESEN, I.; LISKI, J.; RAULUND-RASMUSSEN, K.; OLSSON, M. T.; TAU-STRAND, L.; VESTERDAL, L., et al. Soil carbon stores in Nordic well-drained forest soils relationships with climate and texture class. Glob. Chang. Biol. 9, 358–370, 2003.

CAMARGO, M. G. SISGRAN: Um sistema de código aberto para análises granulométricas do sedimento. Revista Brasileira de Geociências, v. 36, n. 2, pp. 371-378, 2006.

CAMPBELL, K. E.; FRAILEY, C. D.; ROMERO-PITTMAN, L. The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, n.239,166-219, 2006. https://doi.org/10.1016/j.palaeo.2006.01.020.

CARVALHO, J. A. L. Erosão Nas Margens do Rio Amazonas: o Fenômeno das Terras Caídas e suas Implicações na vida dos moradores. Tese - Programa de Pós-Graduação em Geografia. Niterói/RJ: Universidade Federal Fluminense, 2012.

COULTER, B. Instruction for use: LS 13 320 laser diffraction particle size analyzer. 2011.

DI STEFANO, C., FERRO, V., MIRABILE, S. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosyst. Eng. 106, 205–215, 2010. https://doi.org/10.1016/j.biosystemseng.2010.03.013.

DONAGEMMA, G. K.; VIANA, J. H. M.; ALMEIDA, B. G.; RUIZ, H. A.; KLEIN, V. A.; DECHEN, S. C. F.; FERNANDES, R. B. A. Análise Granulométrica. In: Manual de Métodos de Análise de Solo. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. (Orgs.). EMBRAPA Solos, 2017.

DROBNIK, T.; GREINER, L.; KELLER, A.; GRÊT-REGAMEY, A. Soil quality indicators – from soil functions to ecosystem services. Ecol. Indic. v. 94, 151–169, 2018. https://doi.org/ 10.1016/j.ecolind.2018.06.052.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (EMBRAPA). Manual de métodos de análise de Solo. Rio de Janeiro. Centro Nacional de Pesquisa de Solos. 1997, 212p.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (EMBRAPA). Sistema Brasileiro de Classificação de Solos. EMBRAPA, Brasília, 2018.

ESHEL, G.; LEVY, G. J.; MINGELGRIN, U.; SINGER, M. J. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68, 736–743, 2004. https://doi.org/10.2136/sssaj2004.7360.

FAÉ, G. S.; MONTES, F.; BAZILEVSKAYA, E.; AÑO, R. M.; KEMANIAN, A. R. Making soil particle size analysis by laser diffraction compatible with standard soil texture determination methods. Soil Sci. Soc. Am. J. v. 83, 1244–1252, 2019. https://doi.org/ 10.2136/sssaj2018.10.0385.

FISHER, P.; AUMANN, C.; CHIA, K.; O’HALLORAN, N.; CHANDRA, S. Adequacy of laser diffraction for soil particle size analysis. PLOS ONE, v. 12, n. 5, 2017. https://doi. org/10.1371/journal.pone.0176510.

ISO 11277. ISO 11277: Soil Quality — Determination of Particle Size Distribution in Mineral Soil Material — Method by Sieving and Sedimentation. International Organization for Standardization. 2009.

ISO 11277. ISO 11277: Soil Quality — Determination of Particle Size Distribution in Mineral Soil Material — Method by Sieving and Sedimentation. International Organization for Standardization. 2020.

ISO 13320, 2020. ISO 13320: Particle Size Analysis—Laser Diffraction Methods. International Organization for Standardization, 2020.

LATRUBESSE, E. M. Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers. Geomorphology, v. 101, pp. 130–145, 2008.

LATRUBESSE, E. M., FRANZINELLI, E. The late Quaternary evolution of the Negro River, Amazon, Brazil: Implications for island and floodplain formation in large anabranching tropical systems. Geomorphology, 70, p. 372–397, 2005.

MAIA, R. G.; GODOY, H. K.; YAMAGUTI, H. S.; MOURA, P. A.; COSTA, F. S. F.; HOLANDA, M. A.; COSTA, J. A. Projeto carvão no Alto Amazonas. Final report. Rio de Janeiro CPRM, 1977.

MALVERN INSTRUMENTS LTD. Mastersizer 2000 user manual. 2007.https://www.scribd.com/document/549962884/Mastersizer-3000- User-Manual-English-MAN0474-07-EN-00

MARINHO, R. R., FILIZOLA JUNIOR, N. P., CREMON, É. H. Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water, 12, 1073, 2020.

MARINHO, R. R.; ZANIN, P. R.; FILIZOLA, N. P. The Negro River in the Anavilhanas Archipelago: streamflow and geomorphology of a complex anabranching system in the Amazon. EARTH SURFACE PROCESSES AND LANDFORMS, v. 47, p. 1-16, 2021.

PYE, K. Aeolian dust and dust deposits. Academic Press, 1987.

QUEIROZ, M. S, Dinâmica Geomorfológica do Complexo Fluvial de Mariuá, Rio Negro, Bacia Amazônica. Dissertação (Programa de Pós-Graduação em Geografia da Universidade Federal do Amazonas), Manaus, 2022.

QUEIROZ, M. S.; ALVES, N. S. Conditioning Factors of “Terras Caídas” in Lower Solimões River – Brazil. Caminhos de Geografia, v. 22, pp. 220-233, 2021.

QUEIROZ, M. S.; LIMA, J. A.; MARINHO, R. R. Caracterização Física dos Sedimentos do Arquipélago Fluvial de Mariuá, Rio Negro, Bacia Amazônica. In: MARINHO, R. R.; SOUZA, G. A.; SILVA NETO, J. C. A. (Orgs.). A Geografia Amazônica em múltiplas escalas Volume 2. 1ed.Manaus: EDUA, 2022, v. 1, p. 179-196.

QUEIROZ, M. S.; MARINHO, R. R.; CARVALHO, J. A. L. SILVA, C. F., The Geomorphological Landscape of the Mariuá Archipelago: An Anabranching Megacomplex System in the Negro River, Amazon Basin (Brazil). 2025 Available at SSRN: https://ssrn.com/abstract=5087164 or http://dx.doi.org/10.2139/ssrn.5087164.

QUEIROZ, M. S.; MARINHO, R. R.; ALVES, N. S.; RODRIGUES, C. Arquipélago de Anavilhanas: Uma revisão das suas formas, processos e origem. Revista Geonorte, v. 15, 2024.

QUEIROZ, M. S.; SOARES, A. P. A.; TOMAZ NETO, A. G. Comunidades rurais ribeirinhas e as águas do rio Solimões no município de Iranduba – Amazonas. Revista Brasileira de Meio Ambiente, v.4, n.1.108-119, 2018.

SCHOENHOLTZ, S. H.; MIEGROET, H. V.; BURGER, J. A. A review ofchemical and physical properties as indicators of forest soil quality: challengesand opportunities. For. Ecol. Manag. 138, 335–356, 2000. doi: 10.1016/S0378-1127(00)00423-0.

SHAO, Y. (Org.). Physics and modelling of wind erosion. Springer, 2008.

SHEPARD, F. P. Nomenclature based on sand-silt-clay ratios. Journal Sedimentary Petrology, 24:151-158, 1954.

SINKOVICOVA, M.; IGAZ, D.; KONDRLOVA, E.; JAROSOVA, M. Soil Particle Size Analysis by Laser Diffractometry: Result Comparison with Pipette Method. IOP Conf. Ser. Mater. Sci. Eng. v. 245, 2017, 072025 https://doi.org/10.1088/1757-899X/245/7/072025.

SVENSSON, D. N.; MESSING, I.; BARRON, J. An investigation in laser diffraction soil particle size distribution analysis to obtain compatible results with sieve and pipette method. Soil & Tillage Research, v. 223, 2022.

TATUMI, H.; YEE, M.; SOARES, E. A. A.; SOUZA, J. J.; GRUDZIN, E. D. O.; MUNITA, C. S.; RIBEIRO, R. B.; SOARES, A.; SILVA, N. A.; FERNANDES, C. P.; MATHIAS, M. T.; ROCCA, R. R.; NAGABHUSHANA, K. R.; LOKESHA, H. S.; ROCHA, M. S.; LOPEZ, L. A. C.; VENÂNCIO, D. W. P.; COSTA, S. S. Radiometric and stimulated luminescent characterization of Amazonian sediments from the Middle Rio Negro, Western Amazon. Radiation Physics and Chemistry, v. 1, p. 111117-28, 2023.

TAUBNER, H.; ROTH, B.; TIPPKOTTER, R. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. J. Plant Nutr. Soil Sci. 172, 161–171, 2009. https://doi.org/10.1002/jpln.200800085.

TOMÁŠOVÁ, G.; PASEKA, S.; BAJER, A. Comparison of laser diffractometry and pipetting methods for particle size determination: A pilot study on the implications of result discrepancies on soil classification. Soil Sci. Soc. Am. J, v. 89, 2025.

ÚJVÁRI, G.; KOK, J. F.; VARGA, G.; KOVÁCS, J. The physics of wind-blown loess: Implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Science Reviews, v. 154, 247– 278, 2016.

VARGA, G.; KOVÁCS, J.; SZALAI, Z.; CSERHÁTI, C.; ÚJVÁRI, G. Granulometric characterization of paleosols in loess series by automated static image analysis. Sedimentary Geology, 370, 1–14, 2018.

VIANA, J. H. M.; DONAGEMMA, G. K. Influência da temperatura de secagem da amostra na proporção das frações granulométricas de alguns Latossolos. Sete Lagoas: Embrapa Milho e Sorgo, 2011. 7 p. (Embrapa Milho e Sorgo: Comunicado Técnico, 188).

WENTWORTH, C.K. A scale of grade and class terms for clastic sediments. Journal of Geology, v. 30, pp. 377-392, 1922.

YANG, X.; ZHANG, Q.; LI, X.; JIA, X.; WEI, X.; SHAO, M. Determination of soil texture by laser diffraction method. Soil Sci. Soc. Am. J. 79, 1556–1566, 2015. https://doi.org/ 10.2136/sssaj2015.04.0164.

Published

2025-03-29

Issue

Section

Artigos

How to Cite

Queiroz, M. S. de, Marinho, R. R., Vieira , A. F. S. G., & Silva, . F. W. R. (2025). Comparison between laser diffraction and pipette methods for grain size analysis of fluvial sediments from the Amazon Basin. Revista Do Departamento De Geografia, 45, e232770 . https://doi.org/10.11606/eISSN.2236-2878.rdg.2025.232770