A review of anatomical adaptations in the middle ear of living aquatic Tetrapods
DOI:
https://doi.org/10.11606/issn.1984-5154.v24p1-8Keywords:
Tetrapods, aquatic, dive, pressureAbstract
Tetrapods have evolved from aquatic vertebrates and have conquered and diversified in the terrestrial habitat. While most species have well adapted to inland forms, some of them have returned to the aquatic environment due to increasing competition on Earth’s surface. Studies regarding these species have been focused on hearing anatomy and auditory processes, neglecting the adaptations developed throughout evolution to compensate for pressure in the middle ear during dives. This review compiles the available information of mechanisms employed by tetrapods to prevent middle ear barotrauma underwater and how these processes have changed during evolution. The results show that throughout the evolution process, different lineages have developed distinct, and occasionally shared, mechanisms to avoid middle ear barotrauma underwater. Also, the results evince the lack of information on some Tetrapods lineages regarding middle ear evolution, from unique species, such as the Galápagos marine iguana, to marine mammals.
Downloads
References
Allin E.F., Hopson J.A. 1992. Evolution of the auditory system in Synapsida ("mammal-like reptiles" and primitive mammals) as seen in the fossil record. In: Webster, D. B. Webster; Fay, R. R.; Popper, A. N. (Eds.). The evolutionary biology of hearing. New York: Springer-Verlag, 587-614.
Anthwal N., Joshi L., Tucker A. S. 2013. Evolution of the mammalian middle ear and jaw: Adaptations and novel structures. Journal of Anatomy, 222:147–160.
Au W.W.L., Hastings M.C. 2008. Principles of marine bioacoustics. New York: Springer, 679pp.
Beebe W. 1951. Half Mile Down. New York: Duell Sloan Pearch, 344pp.
Bianucci G, Landini W. 2007. Fossil history. In: Miller, D.E (Eds). Reproductive biology and phylogeny of Cetacea. Enfield: Science Publisher, 35-94.
Bost C.A., Putz K., Lage J. 1994. Maximum diving depth and diving patterns of the gentoo penguin Pygoscelis papua at the Crozet Islands. Marine Ornithology, 22:237–244.
Brusatte S.L, Benton M.J, Desojo J.B, Langer M.C. 2010. The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). Journal of Systematic and Palaeontology, 8:3-47.
Carlson S, Jones J, Brown M, Hess C. 1992. Prevention of hyperbaric associated middle ear barotrauma. Annual Emergency Medicine, 21:1468–1471.
Catenazzi L., Vredenburg A.C, Lehr E, Vredenburg V.T. 2014. Thermal physiology, disease and amphibian declines in the eastern slopes of the Andes. Conservation Biology, 28:509–517.
Chapla M. E. 2006. Florida manatee (Trichechus manatus latirostris) outer and middle ear morphology: potential sound conduction pathways and middle-ear mechanism. Tallahassee: Florida State University.
Christensen-Dalsgaard J; Elepfandt A. 1995. Biophysics of underwater hearing in the clawed frog, Xenopus laevis. Journal of Comparative. Physiology, 176:317–324.
Clack J.A, Allin E. 2004. The stapes of Acanthostega gunnari and the role of stapes in early tetrapods. In: Webster, D.B; Fay, R.R; Popper, A.N. Evolution of the vertebrate auditory system. New York: Springer 405-420.
Claes R, Muyshondt P.G.G, Dirckx J.J.J, Aerts, P. 2017. Deformation of avian middle ear structures under static pressure loads, and potential regulation mechanisms. Zoology, 126:128-136.
Colbert E.H. 1946. The Eustachian Tubes in the Crocodilia. Copeia, 1:12-14.
Dijk P.V, Manley G.A. 2013. The Effects of Air Pressure on Spontaneous Otoacoustic Emissions of Lizards. Journal of the Association of Research in Otolaryngology, 14(3): 309–319.
Fleischer G. 1978. Evolutionary principles of the mammalian middle ear. Advanced Anatomy and. Embryology Cell Biology, 55: 1-70.
Foth C, Evers S.W, Joyce W.G, Volpato V.S, Benson R.B.J. 2019. Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology. Journal of Anatomy, 235:1078-1097.
Frahnert S, Linder M, Bendel E.M, Frahnert K.M, Westphal N, Dähne M. 2020. 3D-Visualization of the Ear Morphology of Penguins (Spheniscidae): Implications for Hearing Abilities in Air and Underwater. Proceeding of. Meetings on Acoustics, 37:010018.
Gaffney E.S, Tong H, Meylan P.A. 2006. Evolution of the sidenecked turtles: the families Bothremydidae, Euraxemydidae, and Araripemydidae. Bulletin of the American Museum of Natural History, 300:1–318.
Gatesy J, O'Leary M.A. 2001. Deciphering whale origins with molecules and fossils. Tropical Ecology Evolution,16:562–570.
Ghoul A, Reichmunth C. 2014. Hearing in the sea otter (Enhydra lutris): auditory profiles for an amphibious marine carnivore. Journal of Comparative Physiology, 200: 967-81.
Graham S.F. 1967. Seal ears. Science, 155: 489.
Guillon J.M, Guery L, Hulin V, Girondot M. 2012. A large phylogeny of turtles (Testudines) using molecular data. Contributions on. Zoology, 81:147–158.
Haines D.E, Mihailoff G.A. 2018. Fundamental Neuroscience for Basic and Clinical Applications. 5ed. Amsterdã: Elsevier, 528pp.
Han D, Young B.A. 2016. Anatomical Basis of Dynamic Modulation of Tympanic Tension in the Water Monitor Lizard, Varanus salvator. The Anatomy Records, 299:1270–1280.
Hartline P.H, Campbell H.W. 1969. Auditory and vibratory responses in the midbrains of snakes. Science,163:1221-1223.
Hetherington T. E. 1992. The effects of body size on the evolution of the amphibian middle ear. In: Webster, D. B; Fay, R. R; Popper, A. N. (Eds.). The evolutionary biology of hearing. New York:Springer, 421-454.
Hetherington T.E. 2008. Comparative anatomy and function of hearing in aquatic amphibians, reptiles, and birds. In: Thewissen, J.G.M; Nummela S (Eds). Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates. Berkeley: University of California Press, 183-209.
Hood J.D. 1977. Psychological and Physiological Aspects of Hearing. In: Critchley, M; Henson, R.A. (Eds). Music and the brain. Amsterdã: Elsevier, 32-47.
Jaslow A.P, Hetherington T.E., Lombard R.E. 1986. Comparative morphology of the amphibian opercularis muscle. I. General design fea-tures and functional interpretation. Journal of Morphology, 190:43–61.
Jefferson T.A, Webber M.A, Pitman R.L. 2015. Marine Mammals of the World: A comprehensive guide for their identification. 2nd ed. Cambridge: AcademicPress, 616pp.
Karahatay S, Yilmaz Y.F, Birkent H, Ay H, Satar, B. 2008. Middle ear barotrauma with hyperbaric oxygen therapy: incidence and the predictive value of the nine-step inflation/deflation test and otoscopy. Ear Nose Throat Journal, 87:684–688.
Kartaschew N.N, Iljitschow W.D. 1964. Über das Gehörorgan der Alkenvögel. Journal of Ornithology, 105:113-136.
Kemp TS. 2006. The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis. Journal of Evolutionary Biology, 19:1231–1247.
Ketten D. R. 2003. Marine mammal auditory systems: a summary of audiometric and anatomical data and its implications for underwater acoustic impacts. Polarforschung, 72:79–92.
Ketten D.R, Domning D.P., Odel D. 1993. Structure, function and adaptations of the Manatee ear. In: Thomas, J.A.; Kastelein, R.A.;Supin, A.Y (Eds). Marine Mammals Sensory Systems. New York: Springer, 77-95.
Ketten D.R. 1994. Functional analyses of whale ears: Adaptations for underwater hearing. Proceeding on Underwater Acoustics, 1: 264-270.
Ketten D.R. 1997. Structure and function of whale ears. Bioacoustics, 8:103-135.
Ketten D.R. 2000. Cetacean ears. In: W. L. Au , A. N. Popper, R. R. Fay (Eds). Hearing by Whales and Dolphins. New York: Springer, 43-108.
Kooyman G.L, Cherel Y, Le Maho Y, Croxall J.P, Thorson P.H, Ridoux V. 1992. Diving behavior and energetics during foraging cycles in king penguins. Ecology. Monograph, 62:14363.
Kooyman G.L, Kooyman T.G. 1995. Diving behavior of emperor penguins nurturing chicks at Coulman Island, Antarctica. Condor, 97:53649.
Larsen O.N, Christensen-Dalsgaard J, Jensen K.K. 2016. Role of intracranial cavities in avian directional hearing. Biology Cyber, 110:319-331.
Larsen O.N, Wahlberg M, Christensen-Dalsgaard J. 2020. Amphibious hearing in a diving bird, the great cormorant (Phalacrocorax carbo sinensis). Journal of Experimental Biology, 223,[jeb217265.
Laurin M. 2010. How Vertebrates Left the Water. Berkeley: University of California Press, 216pp.
Lenhardt M.L, Klinger R.C, Musick J.A. 1985. Marine turtle middle-ear anatomy. Journal of Auditory Research, 25:66–72.
Lone K., Kovacs K.M, Lydersen C, Fedak M, Andersen M, Lovell P, Aars, J. 2018. Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic. Scientific Reports, 8:9677.
Manley G.A. 2010. An evolutionary perspective on middle ears. Hearing Research, 263:3-8.
Mason M.J. 2006. Pathways for sound transmission to the inner ear in amphibians. In: Narins, P.M; Feng, A.S; Fay R.R; Popper, A.N. (Eds). Hearing and Sound Communication in Amphibians. New York: Springer, 147-183.
McCormick J.G., Wever E.G., Palin J., Ridgway S.H. 1970. Sound conduction in the dolphin ear. Journal of Acoustic Society of America, 48:1418-1428.
McDowell S.N. 1967. The Extracolumella and Tympanic Cavity of the "Earless" Monitor Lizard, Lanthanotus borneensis. Copeia, 1967(1):154-159.
Melamed Y, Shupak A, Bitterman H. 1992. Medical problems associated with underwater diving. New England Journal of Medicine, 326:30–35.
MØhl B. 1968. Hearing in seals. In: Harrison, R; Hubbard, R; Rice, C; Schusterman, R.J. (Eds.). The behavior and physiology of pinnipeds. New York: Appleton-Century, 172-195.
Murphy J, Lamoreaux W. 1978. Threatening behavior in Merten’s water monitor Varanus mertensi (Sauria: Varanidae). Herpetology, 34:202–205.
Nummela S., Yamato M. 2018. Hearing. In: Würsig, B; JGM, T.; Kovacs, K. M.(Eds.). Encyclopedia of marine mammals. New York: Academic Press, 462-470.
O’Malley B. 2005. Clinical Anatomy and Physiology of Exotic Species: Structure and function of mammals, birds, reptiles and amphibians. Philadelphia: Saunders Ltd, 272pp.
O’Neill O.J, Brett K, Frank A.J. 2022. Middle Ear Barotrauma. Bethesda: National Library of Medicine.
Owerkowicz T, Brainerd E, Carrier D. 2001. Electromyographic pattern of the gular pump in monitor lizards. Bulletin of the Museum of Comparative Zoology, 156:237–248.
Paparella I, Caldwell M.W. 2021. Cranial anatomy of the Galápagos marine iguana Amblyrhynchus cristatus (Squamata: Iguanidae). The Anatomical Record, 305:1739–1786.
Pereyra et al. 2016. The complex evolutionary history of the tympanic middle ear in frogs and toads (Anura). Scientific Reports, 6: 34130.
Purves P. E. 1955. The wax plug in the external auditory meatus of the Mysticeti. Discovery Reports, 27:293–302.
Raselli I. 2018. Comparative cranial morphology of the Late Cretaceous protostegid sea turtle Desmatochelys lowii. PeerJ, 6: e5964.
Repenning C.A. 1972. Underwater hearing in seals: functional morphology. In: Harisson, R.J. (Ed.). Functional anatomy of marine mammals. London: Academic Press, 307-331.
Riedman M.L. 1990. The pinnipeds: seals, sea lions, and walruses. Berkeley:University of California Press, 439pp.
Sade J., Handrich Y., Bernheim J, Cohen D. 2008. Pressure equilibration in the penguin middle ear. Acta of Oto-Laryngology, 128:1821.
Saiff E. I. 1978. The middle ear of the skull of birds: the Pelecaniformes and Ciconiiformes. Zoology Journal Linnean Society, 63:315-370.
Sánchez-Martínez P.M, Daza J.D, Hoyos J.M. 2021. Comparative anatomy of the middle ear in some lizard species with comments on the evolutionary changes within Squamata. PeerJ, 9:e11722.
Stenfors L.E, Sadé J, Hellström S, Anniko M. 2001. How can the hooded seal dive to a depth of 1000 m without rupturing its tympanic membrane? A morphological and functional study. Acta Oto-laryngologica, 121:689–95.
Stirling I, Van Meurs R. 2015. Longest recorded underwater dive by a polar bear. Polar Biology, 38:1301-1304.
Tahara R, Larsson H.C.E. 2022. Paratympanic sinuses in juvenile Alligator mississippiensis. The Anatomical Records, 305:2926-2979.
Thewissen J.G.M Cooper L.N. George J.C. Bajpai S. 2009. From Land to Water: the Origin of Whales, Dolphins, and Porpoises. Evolution EducationL Outreach, 2:272–288.
Tubelli A.A., Zosuls A., Ketten D.R., Mountain D.C. 2018. A model and experimental approach to the middle ear transfer function related to hearing in the humpback whale (Megaptera novaeangliae). Journal of Acoustic Society, 144:525-535.
Von Bartheld C.S, Giannessi F. 2011. The paratympanic organ: a barometer and altimeter in the middle ear of birds? Journal of Experimental Zoology, 316:402-408.
Von Bartheld C.S. 1994. Functional Morphology of the Paratympanic Organ in the Middle Ear of Birds. Brain Behavior Evolution, 44:61–73.
Wannaprasert T. 2013. Comparative Anatomy of the Mammalian Bony Cochlea and its Ontogenetic Development in Humans. PhD thesis, University of Liverpool.
Wever E.G. 1978. The reptilian ear: Its structure and function. New Jersey: Princeton University Press, 1038pp.
Wever E.G. 1985. The Amphibian Ear. Princeton: Princeton University Press, 498pp.
Willis K.L, Christensen-Dalsgaard J, Ketten D.R, Carr C.E. 2013. Middle Ear Cavity Morphology Is Consistent with an Aquatic Origin for Testudines. PLOS ONE, 8, e54086.
Wilson R.P. 1985. The Jackass Penguin (Spheniscus demersus) as a pelagic predator, Marine Ecology, 25:219-227.
Womack M.C, Christensen-Dalsgaard J, Coloma L.A, Chaparro J.C, Hoke K.L. 2017. Earless toads sense low frequencies but miss the high notes. Proceedings of the. Royal Society B, 284:20171670.
Young B.A, Bierman H.S. 2019. On the median pharyngeal valve of the American alligator (Alligator mississippiensis). Journal of Morphology, 280:58-67.
Zachary J.F. 2016. Pathologic Basis of Veterinary Disease. Amsterdã: Elsevier.
Zeyl J.N, Snelling E.P, Connan M, Basille M, Clay T.A, Joo R, Patrick S.C, Phillips R.A, Pistorius P.A, Ryan P.G, Snyman A, Clusella-Trullas S. 2022. Aquatic birds have middle ears adapted to amphibious lifestyles. Scientific Research, 12:5251.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Helena Gurjão Pinheiro do Val
This work is licensed under a Creative Commons Attribution 4.0 International License.
We ensure that our journal does not retain any copyright and that these are exclusive of the author(s) of the text. In that sense, we intend to break any restrictions to the published material and to achieve more intensely our goal of communicating science.