THE VEGETATION ROLE IN THE CONTROL OF WINDS TO THERMAL COMFORT

Authors

  • Helena Cristina Padovani Zanlorenzi Universidade de São Paulo. Faculdade de Arquitetura e Urbanismo http://orcid.org/0000-0002-2228-9576
  • Demóstenes Ferreira da Silva Filho Universidade de São Paulo. Escola Superior de Agricultura "Luiz de Queiroz"

DOI:

https://doi.org/10.11606/issn.2179-2275.v9i1p74-94

Keywords:

Urban forestry, Urban climate, Thermal comfort, Windbreaks, LAI

Abstract

Understanding the climate of urban areas in its various conformations is an object of great interest for the improvement of the life quality of its users. This study is part of the Master’s Degree thesis that aimed to evaluate vegetation elements as a barrier to winds, targeting the thermal comfort in open spaces. The used procedure was to quantify the interference of vegetation elements in the wind flows, at pedestrians’ height, from pre-established vegetation configurations. The scenario chosen for this study was the external area of the Methodist University of Piracicaba (UNIMEP) Campus, in Taquaral District in Piracicaba City, SP. A combination of three species arranged as wind barrier were studied: Jasminum mesnyi Hance, Pseudosasa japonica (Steud.) Makino and Pinus caribaea Morelet. The measured microclimate variables were: air temperature, relative air humidity and wind speed, in three distinct positions per species: in an open field nearby, in front and behind the barrier. The data collection period was from 9 a.m. to 9 p.m., in intervals of 3 to 5 minutes, for three days each species, during August and September 2014. It was taken the LAI (Leaf Area Index) measurement of the barriers, to analyze the feasibility of adopting it as a parameter to predict results, what would allow its applicability to other species. The results indicated a favorable trend towards this principle, but studies with more sampling intensity are necessary to obtain this correlation. Other uses may have benefits from this line of study, as predicting the risk of falling trees, for instance.

Downloads

Download data is not yet available.

Author Biographies

  • Helena Cristina Padovani Zanlorenzi, Universidade de São Paulo. Faculdade de Arquitetura e Urbanismo
    Arquiteta, doutoranda em Tecnologia da Arquitetura na Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo, São Paulo – SP
  • Demóstenes Ferreira da Silva Filho, Universidade de São Paulo. Escola Superior de Agricultura "Luiz de Queiroz"
    Engenheiro Agrônomo, Professor Doutor em Ciências Florestais na Escola Superior de Agricultura Luiz de Queiroz da Universidade de São Paulo, Piracicaba – SP

References

ALI-TOUDERT, F.; MAYER, H. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Solar Energy, Freiburg, v. 81, p. 742-754, 2007.

ASSIS, E.S.; SIRQUEIRA, C.A.; BAMBERG, A.M. Influência da vegetação no microclima em ambiente simulado controlado. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 12.; ENCONTRO LATINOAMERICANO DE CONFORTO NO AMBIENTE CONSTRUÍDO, 8., 2013, Brasília. Anais... Brasília: ENCAC, 2013. p. 324-338.

BARRETTO, A. G. O. P.; SPAROVEK, G.; GIANNOTTI, M. Atlas Rural de Piracicaba. Piracicaba: Instituto de Pesquisas e Estudos Florestais – IPEF, 2006, 76 p.

BITOG, J.P.; LEE, I.-B.; HWANG, H.-S.; SHIN, M.-H.; HONG, S.-W.; SEO, I.-H.; KWON, K.-S.; MOSTAFA, E.; PANG, Z. Numerical simulation study of a tree windbreak. Biosystems Engineering, Seoul, v. 3, p. 40-48, 2012.

BLOCKEN, B.; JANSSEN, T.; VAN HOOFF, T. CFD simulation for pedestrian wind comfort and wind safety in urban areas: general decision framework and case study for the Eindhoven University campus. Environmental Modelling & Software, Eindhoven, v. 30, p. 15-34, 2012.

BONAN, G. Ecological climatology: concepts and applications. Cambridge: Cambridge University Press, 2002, 690 p.

BOTTILLO, S.; VOLLARO, A.D.L.; GALLI, G.; VALLATI, A. CFD modeling of the impact of solar radiation in a tridimensional urban canyon at different wind conditions. Solar Energy, Rome, v. 102, p. 212-222, 2014.

BOURDIN, P.; WILSON, J.D. Windbreak aerodynamics: is computational fluid dynamics reliable? Boundary-Layer Meteorology, Edmonton, v. 126, n. 2, p. 181-208, 2007.

BROWN, R.D.; GILLESPIE, T.J. Microclimatic landscape design: creating thermal comfort and energy efficiency. New York: John Wiley, 1995.193 p.

CHEN, L.; NG, E. Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities, Hong Kong, v. 29, p. 118-125, 2012.

CHU, C.-R.; CHANG,C.-Y.; HUANG, C.-J.; WU, T.-R.; WANG, C.-Y.; LIU, M.-Y. Windbreak protection for road vehicles against crosswind. Journal of Wind Engineering and Industrial Aerodynamics, Taiwan, v. 116, p. 61-69, 2013.

DOBBERT, L.Y. Arborização na cidade de Campinas/SP: percepção e conforto. Tese (Doutorado em Recursos Florestais) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2014.

DONG, Z.; LUO, W.; QIAN, G.; LU, P.; WANG, H. A wind tunnel simulation of the turbulence fields behind upright porous wind fences. Journal of Arid Environments, Lanzhou, v. 74, p. 193-207, 2010.

ERELL, E.; PEARLMUTTER, D.; WILLIAMSON, T. Urban microclimate: designing the spaces between buildings. London: MPG Books, 2011. 266 p.

FAHMY, M.; SHARPLES, S.; YAHIYA, M. LAI based trees selection for mid latitude urban developments: a microclimatic study in Cairo, Egypt. Building and Environment, Cairo, v. 45, p. 345-357, 2010.

FROTA, A.B.; SCHIFFER, S.R. Manual de conforto térmico: arquitetura, urbanismo. 5. ed. São Paulo: Studio Nobel, 2001. 243 p.

GAO, Y.; YAO, R.; LI, B.; TURKBEYLER, E.; LUO,Q.; SHORT, A. Field studies on the effect of built forms on urban wind environments. Renewable Energy, Cambridge, v. 46, p. 148-154, 2012.

GEIGER, R. Manual de climatologia: o clima da camada de ar junto ao solo. Lisboa: Fundação Calouste Gulbenkian, 1960. 556 p.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Censo 2010. Disponível em: ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/Resultados_do_Universo/tabelas_pdf/tab1.pdf. Acesso em: 19 maio 2015.

JONES, H. Plants and microclimate: a quantitative approach to environmental plant physiology. 2nd ed. Cambridge: Cambridge University Press, 1992. 428 p.

JUNG, W.-S.; PARK, J.-K.; LEE, H.-W.; KIM, E.-B.; CHOI, H.-J. Wind speed variation over the leeward region according to vegetation under the strong wind. In: INTERNATIONAL CONFERENCE WIND EFFECTS ON TREES, 2., 2009, Freiburg. Proceedings… Freiburg: Univ. Freiburg, Ber. Meteor. Inst., 2009. p. 255-261.

KOENIGSBERGER, O.H.; INGERSOLL, T.G.; MAYHEW, A.; SZOKOLAY, S.V. Viviendas y edificios en zonas cálidas y tropicales. London; Madrid: Paraninfo, 1977. 328 p.

KUHNS, M. Planting trees for energy conservation: the right tree in the right place. Utah State of University, 2008. Disponível em: http://forestry.usu.edu/htm/city-and-town/tree-selection/planting-trees-for-energy-conservation-the-right-tree-in-the-right-place. Acesso em: 28 maio 2015.

LEE, K.H.; EHSANI, R.; CASTLE, W.S. A laser scanning system for estimating wind velocity reduction through tree windbreaks. Computers and Electronics in Agriculture, Florida, v. 73, p. 1-6, 2010.

LOMBARDO, M.; BIAS, E.S.; BAPTISTA, G.M.M. Análise do fenômeno de ilhas de calor urbanas, por meio da combinação de dados Landsat e Ikonos. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 11, 2003, Belo Horizonte. Anais... São José dos Campos: INPE, 2003. p. 1741-1748.

LOPES, A.; VASCONCELOS, J. A influência da morfologia urbana na modificação das brisas do estuário do Tejo na zona oriental de Lisboa. Lisboa: Universidade de Lisboa, Faculdade de Letras, Centro de Estudos Geográficos, 2007. 360 p.

MASCARÓ, L.R. de. Ambiência urbana. 2. ed. Porto Alegre: +4 Editora, 2004. 199 p.

MOCHIDA, A.; LUN. I.Y.F. Prediction of wind environment and thermal comfort at pedestrian level in urban area. Journal of Wind Engineering and Industrial Aerodynamics, Sendai, v. 96, p. 1498-1527, 2008.

MONTEIRO, C.A.F.; MENDONÇA, F. Clima urbano. São Paulo: Contexto, 2003. 192 p.

MONTEIRO, E.Z. Verdes-dentro e verdes-fora: visões prospectivas para espaços abertos urbanos - privados e públicos - em área habitacional de interesse social. 2007. 272 p. Tese (Doutorado em Arquitetura e Construção) – Faculdade de Engenharia Civil, Universidade Estadual de Campinas, Campinas, 2007.

MONTEIRO, L.M. Modelos preditivos de conforto térmico: quantificação de relações entre variáveis microclimáticas e de sensação térmica para avaliação e projeto de espaços abertos. 2008. 379 p. Tese (Doutorado em Tecnologia da Arquitetura) – Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo, São Paulo, 2008.

MONTEIRO, L.M.; DUARTE, D.; GONÇALVES, J.S.; ALUCCI, M.P. Conforto térmico como condicionante do projeto arquitetônico-paisagístico: o caso dos espaços abertos do novo centro de pesquisas da Petrobras no Rio de Janeiro, CENPES II. Associação Nacional de Tecnologia do Ambiente Construído, Porto Alegre, v. 8, n. 4, p. 61-86, 2008.

NIKOLOPOULOU, M. Designing open spaces in the urban environment: a bioclimatic approach; RUROS: Rediscovering the Urban Realm and Open Spaces. Greece: Centre for Energy Resources, Department of Buildings, 2004. 53 p.

OKE, T.R. Boundary layer climates. 2nd ed. London; New York: Routledge; John Wiley, 1987. 435 p.

______. Initial guidance to obtain representative meteorological observations at urban sites. Vancouver: World Meteorological Organization, 2006. 47 p. (Instruments and Observing Methods, Report, 81; WMO/TD, 1250).

OLGYAY, V.; OLGYAY, A. Design with climate: bioclimatic approach to architectural regionalism. New Jersey: Princeton University Press, 1963. 190 p.

OMETTO, J.C. Bioclimatologia vegetal. São Paulo: Agronômica Ceres, 1981. 440 p.

PARK, M.; HAGISHIMA, A.; TANIMOTO, J.; NARITA, K. Effect of urban vegetation on outdoor thermal environment: field measurement at a scale model site. Building and Environment, Fukuoka, v. 56, p. 38-46, 2012.

PENWARDEN, A.D. Acceptable wind speeds in towns. Building Science, London, v. 8, p. 259-267, 1973.

PENWARDEN, A.D.; WISE, A.F.E. Wind environment around buildings. London: Department of the Environment BRE, Her Majesty’s Stationery Office, 1975. 52 p.

PRATA, A.R. Dimensionamento do impacto da altura de edifícios nas condições de ventilação natural do meio urbano simulando em túnel de vento: o caso de Santos. 2005. 243 p. Tese (Doutorado em Arquitetura e Urbanismo) -Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo, São Paulo, 2005.

RIVERO, R. Arquitetura e clima: acondicionamento térmico natural. 2. ed. Porto Alegre: D.C. Luzzatto Editores, 1986. 240 p.

SANTAMOURIS, M. Environmental design of urban buildings: an integrated approach. London: Sterling, 2006. 322 p.

SANTIAGO, J.L.; MARTÍN, F.; CUERVA, A.; BEZDENEJNYKH, N.; SANZ-ANDRÉS, A. Experimental and numerical study of wind flow behind windbreaks. Atmospheric Environment, Madrid, v. 41, p. 6406-6420, 2007.

SARAIVA, J.A.G. Ação do vento e nível de conforto em espaços urbanos. In: ENCONTRO DE PROFESSORES DE CONFORTO AMBIENTAL, 2.; CICLO DE PALESTRAS DE CONFORTO AMBIENTAL E CONSERVAÇÃO DE ENERGIA, 2., 1994, João Pessoa. Anais… João Pessoa: UFPB, 1994. p. 23-31.

SHASHUA-BAR, L.; HOFFMAN, M.E. Vegetation as a climatic component in the design of an urban street An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings, Haifa, v. 31, p. 221-235, 2000.

SILVA FILHO, D.F. da; PIVETTA, K.F.L.; COUTO, H.T.Z.; POLIZEL, J.L. Indicadores da floresta urbana a partir de imagens aéreas multiespectrais de alta resolução. Scientia Forestalis, Piracicaba, n. 67, p. 88-100, 2005.

SIMÕES, J.W.; DURIGAN, G. Quebra-ventos de Grevillea robusta A. CUNN: efeitos sobre a velocidade do vento, umidade do solo e produção do café. IPEF, Piracicaba, n. 36, p. 27-34, 1987.

STATHOPOULOS, T. Pedestrian level winds and outdoor human comfort. Journal of Wind Engineering and Industrial Aerodynamics, Montreal, v. 94, p. 769-780, 2006.

SZÜCS, A. Wind comfort in a public urban space: case study within Dublin Docklands. Frontiers of Architectural Research, Dublin, v. 2, p. 50-66, 2013.

WATSON, D.J. Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, London, v. 11, p. 41–76, 1947.

WONG, N.H.; CHEN, Y. Tropical urban heat islands: climate, buildings and greenery. London; New York: Taylor & Francis, 2009. 259 p.

WU, H.; KRIKSIC, F. Designing for pedestrian comfort in response to local climate. Journal of Wind Engineering and Industrial Aerodynamics, Guelph, v. 104/106, p. 397-407, 2012.

WU, X.; ZOU, X.; ZHANG, C.; WANG, R.; ZHAO, J.; ZHANG, J. The effect of wind barriers on airflow in a wind tunnel. Journal of Arid Environments, Beijing, v. 97, p. 73-83, 2013.

YEH, C.-P.; TSAI, C.-H.; YANG, R.-J. An investigation into the sheltering performance of porous windbreaks under various wind directions. Journal of Wind Engineering and Industrial Aerodynamics, Tainan, v. 98, p. 520-532, 2010.

Published

2018-04-10

How to Cite

Zanlorenzi, H. C. P., & Silva Filho, D. F. da. (2018). THE VEGETATION ROLE IN THE CONTROL OF WINDS TO THERMAL COMFORT. Revista LABVERDE, 9(1), 74-94. https://doi.org/10.11606/issn.2179-2275.v9i1p74-94