Detecting and analyzing explosive bubbles and their relationship with volatility: evidence from Tunisia

Authors

DOI:

https://doi.org/10.1108/RAUSP-05-2024-0097

Keywords:

Speculative bubbles, SADF, GSADF, Volatility regimes, MSGARCH

Abstract

Purpose

This study aims to identify and analyze speculative bubbles in the Tunisian stock market from 2004 to 2023 and examine the evolution of return volatility during these periods.

Design/methodology/approach

The research uses the Supremum Augmented Dickey-Fuller (SADF) and Generalized Supremum Augmented Dickey-Fuller (GSADF) tests, alongside Monte Carlo and bootstrap simulations (Sieve-bootstrap and Wild-bootstrap), to detect speculative bubbles. The Markov-Switching Generalized Autoregressive Conditional Heteroskedasticity model is used to analyze volatility regimes.

Findings

The study identifies multiple speculative bubbles with varying timing, duration and response to external events. The GSADF test proves more effective than the SADF test for detecting longer, more frequent bubbles. Despite methodological differences, strong correlations among bootstrap techniques improve bubble identification. Bubble periods align with a high-volatility regime (regime 2), emphasizing volatility’s role in bubble formation.

Research limitations/implications

This study enhances the understanding of speculative bubble formation in emerging markets, highlighting the importance of considering national financial market specifics in bubble analysis.

Practical implications

The findings offer valuable insights for investors, regulators and policymakers, helping inform decisions and improve financial regulation to foster market stability.

Social implications

By identifying speculative bubbles, the research helps mitigate economic uncertainty, protects savings and supports financial stability, aiding policymakers in curbing excessive speculation and promoting sustainable economic growth.

Originality/value

This research contributes to the understanding of speculative bubbles in the underexplored Tunisian stock market, using innovative methodologies for a comprehensive analysis of bubbles and volatility dynamics.

Downloads

Download data is not yet available.

References

Antonakakis, N., & Scharler, J. (2012). Volatility, information and stock market crashes. Journal of Advanced Studies in Finance, 3(1), 49‑67. Retrieved from https://journals.aserspublishing.eu/jasf/article/view/57

Ardia, D., Bluteau, K., & Rüede, M. (2019). Regime changes in Bitcoin GARCH volatility dynamics. Finance Research Letters, 29, 266‑271. https://doi.org/10.1016/j.frl.2018.08.009

Bago, J.-L., Souratié, W. M., Ouédraogo, M., Ouédraogo, E., & Dembélé, A. (2019). Financial Bubbles: New Evidence from South Africa’s Stock Market. MPRA Paper No. 95685. University Library of Munich. Retrieved from https://mpra.ub.uni-muenchen.de/id/eprint/95685

Bailey, R. E. (2005). The economics of financial markets. Cambridge, UK: Cambridge University Press. Retrieved from https://books.google.com/books?id=AUd0AgAAQBAJ

Balcombe, K., & Fraser, I. (2017). Do bubbles have an explosive signature in markov switching models? Economic Modelling, 66, 81‑100. https://doi.org/10.1016/j.econmod.2017.06.001

Blanchard, O. J. (1979). Speculative bubbles, crashes and rational expectations. Economics letters, 3(4), 387‑389. https://doi.org/10.1016/0165-1765(79)90017-X

Blasques, F., Koopman, S. J., & Lucas, A. (2014). Maximum likelihood estimation for generalized autoregressive score models. Tinbergen Institute Discussion Paper. Retrieved from https://www.econstor.eu/handle/10419/98908

Campbell, J. Y., & Shiller, R. J. (1987). Cointegration and Tests of Present Value Models. Journal of Political Economy, 95(5), 1062‑1088. https://doi.org/10.1086/261502

Ciaian, P., Rajcaniova, M., & Kancs, d’Artis. (2016). The economics of BitCoin price formation. Applied Economics, 48(19), 1799‑1815. https://doi.org/10.1080/00036846.2015.1109038

Coudert, Virginie, et Florence Verhille, 2001, À propos des bulles spéculative, Bulletin de la Banque de France, no 95: 97-104.

Davidson, R., & Flachaire, E. (2008). The wild Bootstrap, tamed at last. Journal of Econometrics, 146(1), 162‑169. https://doi.org/10.1016/j.jeconom.2008.08.003

Diba, B. T., & Grossman, H. I. (1988). Explosive rational bubbles in stock prices? The American Economic Review, 78(3), 520‑530. https://doi.org/10.3386/w1779

Diniz, R., Prince, D. D., & Maciel, L. (2023). Bubble detection in Bitcoin and Ethereum and its relationship with volatility regimes. Journal of Economic Studies, 50(3), 429‑447. https://doi.org/10.1108/JES-09-2021-0452

Escobari, D., Garcia, S., & Mellado, C. (2017). Identifying bubbles in Latin American equity markets: Phillips-Perron-based tests and linkages. Emerging Markets Review, 33, 90‑101. https://doi.org/10.1016/j.ememar.2017.09.001

Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, 38(1), 34‑105. https://doi.org/10.1086/294743

Fang, W. (2001). Stock return process and expected depreciation over the Asian financial crisis. Applied Economics, 33(7), 905‑912. https://doi.org/10.1080/00036840122487

Frankel, D. M. (2008). ADAPTIVE EXPECTATIONS AND STOCK MARKET CRASHES*. International Economic Review, 49(2), 595‑619. https://doi.org/10.1111/j.1468-2354.2008.00491.x

Goetzmann, W. N. (2015). Bubble investing: Learning from history. National Bureau of Economic Research. Retrieved from https://www.nber.org/papers/w21693

Gutierrez, L. (2011). Bootstrapping asset price bubbles. Economic Modelling, 28(6), 2488‑2493. https://doi.org/10.1016/j.econmod.2011.07.009

Haas, M., Mittnik, S., & Paolella, M. S. (2004). A new approach to Markov-switching GARCH models. Journal of financial Econometrics, 2(4), 493‑530. https://doi.org/10.1093/jjfinec/nbh020

Hafner, C. M. (2020). Testing for bubbles in cryptocurrencies with time-varying volatility. Journal of Financial Econometrics, 18(2), 233‑249. https://doi.org/10.1093/jjfinec/nby023

Harvey, D. I., Leybourne, S. J., Sollis, R., & Taylor, A. R. (2016). Tests for explosive financial bubbles in the presence of non-stationary volatility. Journal of Empirical Finance, 38, 548‑574. https://doi.org/10.1016/j.jempfin.2015.09.002

Kindleberger, C. P., Aliber, R. Z., & Solow, R. M. (2005). Manias, panics, and crashes: A history of financial crises (Vol. 7). Palgrave Macmillan London.

Korkmaz, Ö., Bari, B., & Adalı, Z. (2021). An empirical comparison of stock market bubbles. Business & Management Studies: An International Journal, 9(4), 1286‑1299. https://doi.org/10.15295/bmij.v9i4.1889

Kreiss, J.-P., & Paparoditis, E. (2011). Bootstrap methods for dependent data: A review. Journal of the Korean Statistical Society, 40(4), 357‑378. https://doi.org/10.1016/j.jkss.2011.08.009

LeRoy, S. F., & Porter, R. D. (1981). The present-value relation: Tests based on implied variance bounds. Econometrica: journal of the Econometric Society, 555‑574.

Li, G., Xiao, M., Yang, X., Guo, Y., & Yang, S. (2021). Research on multiple bubbles in China’s multi-level stock market. PloS one, 16(8), e0255476. https://doi.org/10.1371/journal.pone.0255476

Omoruyi, A., Hassan, O. O., & Evbaziegbere, I. (2017). Speculative bubbles in stock market: evidence from Nigeria. Journal of Economics & Finance, 1(1), 271.

Phillips, P. C. B., Shi, S., & Yu, J. (2015). TESTING FOR MULTIPLE BUBBLES: LIMIT THEORY OF REAL‐TIME DETECTORS. International Economic Review, 56(4), 1079‑1134. https://doi.org/10.1111/iere.12131

Phillips, P. C. B., & Yu, J. (2011). Dating the timeline of financial bubbles during the subprime crisis: Timeline of financial bubbles. Quantitative Economics, 2(3), 455‑491. https://doi.org/10.3382/QE82

Robert, C. P. (1999). Monte Carlo Statistical Methods. Springer-Verlag New York. https://doi.org/10.1007/978-1-4757-3071-5

Shiller, R. J. (1981). Do stock prices move too much to be justified by subsequent changes in dividends? American Economic Review, 71(3), 421-436.

Sornette, D., Cauwels, P., & Smilyanov, G. (2018). Can we use volatility to diagnose financial bubbles? Lessons from 40 historical bubbles. Quantitative Finance and Economics, 2(1), 486‑594. https://doi.org/10.3934/QFE.2018.1.486

Taherian, M., & Minouei, M. (2016). Identifying Financial Bubbles Using Finite-time Singularity GARCH Model: A Case Study of Tehran Stock Exchange. Mediterranean Journal of Social Sciences, 7.

Wang, M.-C., Chang, T., & Min, J. (2022). Revisit stock price bubbles in the COVID-19 period: Further evidence from Taiwan’s and Mainland China’s tourism industries. Tourism Economics, 28(4), 951‑960. https://doi.org/10.1177/1354816620983954

Zeren, F., & Yilanc, V. (2019). Are there multiple bubbles in the stock markets? further evidence from selected countries. Ekonomika, 98(1), 81‑95. https://doi.org/10.15388/Ekon.2019.1.5

Downloads

Published

2025-12-29

Issue

Section

Research Paper