A suplementação de arginina é efetiva em prevenir pré-eclâmpsia em gestantes?
DOI:
https://doi.org/10.11606/issn.2176-7262.rmrp.2022.184348Palavras-chave:
Gravidez, Arginina, Pré-eclâmpsia, Suplementação, Óxido nítricoResumo
Objetivo: O objetivo deste estudo foi revisar dados de ensaios clínicos randomizados para avaliar se a suplementação de L-Arginina é efetiva para reduzir a incidência de pré-eclâmpsia em gestantes com alto risco de desenvolver a doença.
Métodos: Realizamos uma revisão sistemática de ensaios clínicos randomizados, incluindo aqueles que compararam a suplementação de L-Arginina com placebo em gestantes de alto risco de desenvolvimento de pré-eclâmpsia, analisando a incidência de pré-eclâmpsia como desfecho principal. Os estudos foram selecionados do MEDLINE/ Pubmed, EMBASE/ Elsevier, LILACS/ BVS e Cochrane.
Resultados: Um total de 46 estudos foram identificados na busca primária. Após análise da elegibilidade, dos critérios de inclusão e de exclusão, dois artigos (que respeitaram em detalhes todas etapas de avaliação) foram incluídos na presente revisão. Foi realizada uma avaliação de risco de viés. A análise dos dados revelou que a incidência de pré-eclâmpsia foi significativamente menor em ambos os estudos, e nenhum efeito adverso importante foi relatado. As limitações deste estudo foram a falta de padronização entre os ensaios clínicos analisados e o número relativamente baixo de estudos incluídos.
Conclusão: A suplementação com L-Arginina parece reduzir a incidência de pré-eclâmpsia em gestantes de alto risco para seu desenvolvimento.
Downloads
Referências
Wu G, Imhoff-Kunsch B, Girard AW. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatric and Perinatal Epidemiology. John Wiley & Sons, Ltd [Internet]. 2012 [cited 2020 Aug 25]; 26:4-26. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3016.2012.01291.x
Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids [Internet]. 2009 [cited 2020 Aug 25]; 37:153–68. Available at: https://link.springer.com/article/10.1007/s00726-008-0210-y
Morris SM. Arginine metabolism revisited. J Nutr [Internet]. 2016 Dec 1 [cited 2020 Aug 25]; 146(12):2579S-2586S. Available at: https://academic.oup.com/jn/article/146/12/2579S/4589950
Puga GM, Novais I de P, Zanesco A. Efeitos terapêuticos da suplementação de L-arginina nas doenças cardiovasculares e endócrino-metabólicas. Arquivos de Medicina [Internet]. 2011 [cited 2020 Aug 25]; 25(3):107-114. Available at: http://hdl.handle.net/11449/72416
Cabral CHA, de Almeida DM, Martins LS, Mendes RKV. Mecanismos fisiológicos e bioquímicos envolvidos no turnover protéico: deposição e degradação de proteína muscular. Enciclopédia Biosfera, Centro Científico Conhecer, Goiânia [Internet]. 2012 [cited 2020 Aug 25];8(15):1185-1203. Available at: https://conhecer.org.br/ojs/index.php/biosfera/article/view/3693
Fuhrmann J, Clancy KW, Thompson PR. Chemical Biology of Protein Arginine Modifications in Epigenetic Regulation. Chemical Reviews. American Chemical Society [Internet]. 2015 [cited 2020 Aug 25]; 115:5413–61. Available at: https://pubs.acs.org/sharingguidelines
Landim MBP, Casella Filho A, Chagas ACP. Asymmetric dimethylarginine (ADMA) and endothelial dysfunction: Implications for atherogenesis. Clinics. Faculdade de Medicina / USP [Internet]. 2009 [cited 2020 Aug 25]; 64:471–8. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-59322009000500015&lng=en&nrm=iso&tlng=en
Neves JA, Neves JA, Oliveira R de CM. Biomarcadores de função endotelial em doenças cardiovasculares: Hipertensão. Jornal Vascular Brasileiro. Sociedade Brasileira de Angiologia e Cirurgia Vascular [Internet]. 2016 [cited 2020 Aug 25]; 15:224–33. Available at: http://dx.doi.org/10.1590/1677-5449.000316
Ignarro LJ. Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension [Internet]. 1990 [cited 2021 May 28]; 16(5):477–83. Available at: https://www.ahajournals.org/doi/10.1161/01.hyp.16.5.477
Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov [Internet]. 2008 Feb [cited 2021 May 28]; 7:156–67. Available at: https://www.nature.com/articles/nrd2466
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature [Internet]. 1980 Nov 27 [cited 2021 May 28]; 288:373–6. Available at: https://www.nature.com/articles/288373a0
Moncada S, Radomski MW, Palmer RM. Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol [Internet]. 1988 Jul 1 [cited 2021 May 28]; 37(13):2495–501. Available at: https://pubmed.ncbi.nlm.nih.gov/3291879/
Huang L-T, Hsieh C-S, Chang K-A, Tain Y-L. Roles of Nitric Oxide and Asymmetric Dimethylarginine in Pregnancy and Fetal Programming. Int J Mol Sci [Internet]. 2012 Nov 9 [cited 2020 Aug 25]; 13(12):14606–22. Available at: http://www.mdpi.com/1422-0067/13/11/14606
Sladek SM, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Physiol [Internet]. 1997 Feb [cited 2021 May 28]; 272:(2 Pt 2):R441-63. Available at: https://pubmed.ncbi.nlm.nih.gov/9124465/
Bode-Böger SM, Scalera F, Ignarro LJ. The l-arginine paradox: Importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharmacology and Therapeutics. Pharmacol Ther [Internet]. 2007 [cited 2020 Aug 25]; 114:295–306. Available at: https://pubmed.ncbi.nlm.nih.gov/17482266/
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch-Eur J Physiol [Internet]. 2010 [cited 2020 Aug 25]; 459:923–39. Available at: https://link.springer.com/article/10.1007/s00424-010-0808-2
Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynecol Obstet [Internet]. 2019 May 20 [cited 2021 May 28]; 145(supl 1):1–33. Available at: https://obgyn.onlinelibrary.wiley.com/doi/10.1002/ijgo.12802
Dymara-Konopka W, Laskowska M. The Role of Nitric Oxide, ADMA, and Homocysteine in The Etiopathogenesis of Preeclampsia—Review. Int J Mol Sci [Internet]. 2019 jun 5 [cited 2020 Aug 25]; 20(11):2757. Available at: https://www.mdpi.com/1422-0067/20/11/2757
Dusse LM, Alpoim PN, Lwaleed BA, de Sousa LP, Carvalho MG, Gomes KB. Is there a link between endothelial dysfunction, coagulation activation and nitric oxide synthesis in preeclampsia? Clin Chim Acta [Ingernet]. 2013 Jan 16 [cited 2021 May 28]; 415:226–9. Available at: https://doi.org/10.1016/j.cca.2012.10.006
Vadillo-Ortega F, Perichart-Perera O, Espino S, Avila-Vergara MA, Ibarra I, Ahued R, et al. Effect of supplementation during pregnancy with L-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: Randomised controlled trial. BMJ [Internet]. 2011 May 28 [cited 2020 Aug 25];342(7808). Available at: https://pubmed.ncbi.nlm.nih.gov/21596735/
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine. BMJ [Internet]. 2009 [cited 2020 Aug 25]; 339:b2700. Available at: https://www.bmj.com/content/339/bmj.b2700
Santos CMC, Pimenta CAM, Nobre MRC. The PICO strategy for the research question construction and evidence search [Internet]. Rev. Latino-Am Enfermagem. 2007 Jun [cited 2020 Aug 25]; 15(3):508–11. Available at: https://doi.org/10.1590/S0104-11692007000300023
Diretrizes metodológicas: elaboração de revisão sistemática e metanálise de ensaios clínicos randomizados [Internet]. Ministério da Saúde, Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Ciência e Tecnologia. – Brasília: Editora do Ministério da Saúde. 2012 [cited 2020 Aug 25]. Available at: http://digital.bibliotecaorl.org.br/handle/forl/412
Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ [Internet]. 2011 Oct 29 [cited 2020 Aug 25];343(7829). Available at: https://www.bmj.com/content/343/bmj.d5928
Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP Classification, Diagnosis and Management Recommendations for International Practice. International Society for the Study of Hypertension in Pregnancy and the American Heart Association. Hypertension [Internet]. 2018 [cited 2020 Aug 25]; 72: 24–43. Available at: https://doi.org/10.1161/HYPERTENSIONAHA.117.10803
Camarena Pulido EE, García Benavides L, Panduro Barón JG, Pascoe Gonzalez S, Madrigal Saray AJ, García Padilla FE, et al. Efficacy of L-arginine for preventing preeclampsia in high-risk pregnancies: A double-blind, randomized, clinical trial. Hypertens Pregnancy [Internet]. 2016 April 2 [cited 2020 Aug 25];35(2):217–25. Available at: https://pubmed.ncbi.nlm.nih.gov/27003763/
Zullino S, Buzzella F, Simoncini T. Nitric oxide and the biology of pregnancy [Internet]. Vascular Pharmacology [Internet]. 2018 [cited 2020 Aug 25]; 110:71–4. Available at: https://pubmed.ncbi.nlm.nih.gov/30076925/
Krause BJ, Hanson MA, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta [Internet]. 2011 Nov [cited 2021 May 28]; 32(11):797–805. Available at: https://doi.org/10.1016/j.placenta.2011.06.025
Demir B, Demir S, Pasa S, Guven S, Atamer Y, Atamer A, et al. The role of homocysteine, asymmetric dimethylarginine and nitric oxide in preeclampsia. J Obstet Gynaecol [Internet]. 2012 Aug [cited 2020 Aug 25]; 32(6):525–8. Available at: https://www.tandfonline.com/doi/abs/10.3109/01443615.2012.693985
Lowe DT. Nitric oxide dysfunction in the pathophysiology of preeclampsia. Nitric Oxide - Biol Chem [Internet]. 2000 [cited 2020 Aug 25]; 4(4):441–58. Available at: https://doi.org/10.1006/niox.2000.0296
Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction hypertension, and proteinuria in preeclampsia. J Clin Invest [Internet]. 2003 Mar 1 [cited 2020 Aug 25]; 111(5):649–58. Available at: https://doi.org/10.1172/JCI17189
Seki H. Balance of antiangiogenic and angiogenic factors in the context of the etiology of preeclampsia. Acta Obstet Gynecol Scand [Internet]. 2014 Oct 1 [cited 2020 Aug 25]; 93(10):959–64. Available at: http://doi.wiley.com/10.1111/aogs.12473
Bergen NE, Jaddoe VWV, Timmermans S, Hofman A, Lindemans J, Russcher H, et al. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: The generation R study. BJOG An Int J Obstet Gynaecol [Internet]. 2012 May 1 [cited 2020 Aug 25]; 119(6):739–51. Available at: https://obgyn.onlinelibrary.wiley.com/doi/full/10.1111/j.1471-0528.2012.03321.x
Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med [Internet]. 2017 Aug 17 [cited 2020 Dec 6]; 377(7):613–22. Available at: https://www.nejm.org/doi/full/10.1056/nejmoa1704559
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Gabriel Leite Citrangulo, Ana Luísa Scafura da Fonseca, Pedro Viana Diniz, João Pedro Torres Neiva Rodrigues, Denise Gasparetti Drumond

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.