Resistência Insulínica uma Disfunção Muito Além da Célula Beta
DOI:
https://doi.org/10.11606/issn.2176-7262.rmrp.2025.198061Palavras-chave:
Resistência à insulina, Hiperinsulinemia, Doença sistêmicaResumo
Introdução: A resistência à insulina (RI) é reconhecida como uma resposta biológica alterada à estimulação insulínica nos tecidos-alvo. A RI interfere no metabolismo da glicose, resultando em aumento da produção de insulina pelas células beta pancreáticas. A principal condição associada à RI em nosso meio é a obesidade, decorrente de fatores ambientais, especialmente a dieta, que ao longo dos anos foi progressivamente se consolidando em nossa civilização. Objetivo: Descrever a RI em diferentes órgãos e apresentar um projeto de via de sinalização. Métodos: Utilizou-se a base de dados PubMed para busca de artigos de revisão sobre resistência à insulina. Os dados referentes à via de sinalização foram selecionados mediante agregação de referências provenientes da Enciclopédia de Genes e Genomas de Kyoto (KEGG). Uma via de sinalização foi elaborada com base em artigos científicos sobre RI, demonstrando os diversos mecanismos envolvidos. O servidor KEGG foi empregado para explorar as interações proteína-proteína e elaborar o diagrama da via de sinalização. O mapeamento da via de sinalização foi realizado com o software PathVisio, adaptado ao modelo da base de dados KEGG PATHWAY: https://www.genome.jp/pathway/map0493 . Resultados: Foram selecionados artigos da base de dados PubMed que incluíam os termos "resistência à insulina" e "via de sinalização". Com base em artigos validados pela base de dados, optou-se por vias bem fundamentadas, obtendo-se uma descrição representativa dessas vias. Contigs de reprodução obtidos da base de dados KEGG permitiram projetar a via de sinalização de biomoléculas que levam à RI. Assim, a atuação conjunta de múltiplos mecanismos libera fatores que participam do desenvolvimento da RI. Conclusão: A interação entre múltiplos mecanismos e as interações moleculares são fatores importantes no desenvolvimento da RI em diversos órgãos e sistemas.
Downloads
Referências
Wortham M, Sander M. Mechanisms of β-cell functional adaptation to changes in workload. Diabetes Obes Metab. 2016; 18 (Suppl 1):78-86.
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14(3):168-181.
Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia. 2009; 52(5):739-51.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9.
Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109 Suppl 2:S135-48.
Sorriento D, Rusciano MR, Visco V, Fiordelisi A, Cerasuolo FA, Poggio P, et al. The Metabolic Role of GRK2 in Insulin Resistance and Associated Conditions. Cells. 2021;10(1):167.
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-D361.
Abel ED, O'Shea KM, Ramasamy R. Insulin resistance: metabolic mechanisms and consequences in the heart. Arterioscler Thromb Vasc Biol. 2012;32(9):2068-76.
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14(3):168-181.
Ketterer C, Tschritter O, Preissl H, Heni M, Häring HU, Fritsche A. Insulin sensitivity of the human brain. Diabetes Res Clin Pract. 2011;93 Suppl 1:S47-51.
Clarke DW, Mudd L, Boyd FT Jr, Fields M, Raizada MK. Insulin is released from rat brain neuronal cells in culture. J Neurochem. 1986;47(3):831-6.
Bromander S, Anckarsater R, Ahren B, Kristiansson M, Blennow K, Holmang A, et al. Cerebrospinal fluid insulin during non-neurological surgery. J Neural Transm (Vienna). 2010;117(10):1167-70.
Verdile G, Fuller SJ, Martins RN. The role of type 2 diabetes in neurodegeneration. Neurobiol Dis. 2015;84:22-38.
Frölich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J Neural Transm (Vienna). 1998;105(4-5):423-38.
Heni M, Kullmann S, Preissl H, Fritsche A, Häring HU. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol. 2015;11(12):701-11.
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev. 2016;96(4):1169-209.
Ono H. Molecular Mechanisms of Hypothalamic Insulin Resistance. Int J Mol Sci. 2019;20(6):1317.
Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376-82.
Kullmann S, Fritsche A, Wagner R, Schwab S, Häring HU, Preissl H, et al. Hypothalamic insulin responsiveness is associated with pancreatic insulin secretion in humans. Physiol Behav. 2017;176:134-138.
Pandey NR, Zhou X, Zaman T, Cruz SA, Qin Z, Lu M, et al. LMO4 is required to maintain hypothalamic insulin signaling. Biochem Biophys Res Commun. 2014;450(1):666-72.
Belsham DD, Dalvi PS. Insulin signalling in hypothalamic neurones. J Neuroendocrinol. 2020;33(4):e12919.
Unger JW, Betz M. Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications. Histol Histopathol. 1998; 13(4):1215-24.
Iitaka M, Katayama S. [Insulin resistance in pituitary, thyroid, and adrenal diseases]. Nihon Rinsho. 2000;58(2):451-5.
Vintila M, Coculescu M, Grigorescu F, Poiana C. The Vasopressin System in Metabolic Syndrome and Insulin Resistance - a Mini-Review. Modern Medicine. 2016;23(3):232-8.
Daimon M, Kamba A, Murakami H, Mizushiri S, Osonoi S, Yamaichi M, et al. Association between serum prolactin levels and insulin resistance in non-diabetic men. PLoS One. 2017;12(4):e0175204.
Johns, WS, O'Mulvenny TO, Potts EG, Laughton NB. Studies on the anterior lobe of the pituitary body. Am. J. Physiol. 1922;80:100.
Houssay BA, Biasotti, Reitti CT. Action diabétogene de l'extrait anté-hypophysaire. C R Soc Biol (Paris). 1932;111:479.
Stefanska A, Cembrowska P, Kubacka J, Kuligowska-Prusinska M, Sypniewska Gonadotropins and Their Association with the Risk of Prediabetes and Type 2 Diabetes in Middle-Aged Postmenopausal Women. G.Dis Markers. 2019;2019:2384069.
Weinstein SP, O’Boyle E, Fisher M, Haber RS. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: Evidence for hormonal regulation of the hepatic glucose transport system. Endocrinol. 1994;135:649–54.
"Comparison of thyroid volume, TSH, free t4 and the prevalence of thyroid nodules in obese and non-obese subjects and correlation of these parameters with insulin resistance status". Layegh P, Asadi A, Jangjoo A, Layegh P, Nematy M, Salehi M, Shamsian A, Ranjbar G. Caspian J Intern Med. 2020;11(3):278-282.
Ulane RE, Graeber JE, Steinherz R. A comparison of insulin receptors in the developing fetal lung in normal and in streptozotocin-induced diabetic pregnancies. Pediatr Pulmonol. 1985;1(3 Suppl):S86-90.
Forno E, Han YY, Muzumdar RH, Celedón JC. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma. J Allergy Clin Immunol. 2015;136(2):304-11.e8.
Fuso L, Pitocco D, Antonelli-Incalzi R. Diabetic lung, an underrated complication from restrictive functional pattern to pulmonary hypertension. Diabetes Metab Res Rev. 2019;35(6):e3159.
Riehle C, Abel ED. Insulin Signaling and Heart Failure. Circ Res. 2016;118(7):1151-69.
Mazumder PK, O'Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004;53(9):2366-74.
Ilkun O, Wilde N, Tuinei J, Pires KM, Zhu Y, Bugger H, et al. Antioxidant treatment normalizes mitochondrial energetics and myocardial insulin sensitivity independently of changes in systemic metabolic homeostasis in a mouse model of the metabolic syndrome. J Mol Cell Cardiol. 2015;85:104-16.
Saotome M, Ikoma T, Hasan P, Maekawa Y. Cardiac Insulin Resistance in Heart Failure: The Role of Mitochondrial Dynamics. Int J Mol Sci. 2019;20(14):3552.
Cook SA, Varela-Carver A, Mongillo M, Kleinert C, Khan MT, Leccisotti L, et al. Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J. 2010;31(1):100-11.
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol. 2019;862:172657.
Kulkarni RN. The islet beta-cell. Int J Biochem Cell Biol. 2004;36(3):365-71.
Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37.
Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell. 2012;150(6):1223-34.
Liu YQ, Montanya E, Leahy JL. Increased islet DNA synthesis and glucose-derived lipid and amino acid production in association with beta-cell hyperproliferation in normoglycaemic 60 % pancreatectomy rats. Diabetologia. 2001;44(8):1026-33.
Du A, Hunter CS, Murray J, Noble D, Cai CL, Evans SM, et al, Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes. 2009;58(9):2059-69.
Sarafidis PA. Obesity, insulin resistance and kidney disease risk: insights into the relationship. Curr Opin Nephrol Hypertens. 2008;17(5):450-6.
Artunc F, Schleicher E, Weigert C, Fritsche A, Stefan N, Häring HU. The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol. 2016;12(12):721-737.
Horita S, Nakamura M, Suzuki M, Satoh N, Suzuki A, Seki G. Selective Insulin Resistance in the Kidney. Biomed Res Int. 2016;2016:5825170.
Herzberg-Schäfer S, Heni M, Stefan N, Häring HU, Fritsche A. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes Metab. 2012;14 Suppl 3:85-90
Wolfe MM, Boylan MO. Obesity and the gastrointestinal tract: you are what you eat. J Clin Gastroenterol. 2014;48(10):817-22.
Fu Z, Mui D, Zhu H, Zhang Y. Exenatide inhibits NF-kappaB and attenuates ER stress in diabetic cardiomyocyte models. Aging (Albany NY). 2020;12(9):8640-8651.
Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One. 2013;8(5):e63983.
Van de Guchte M, Burz SD, Cadiou J, Wu J, Mondot S, Blottière HM, et al. Alternative stable states in the intestinal ecosystem: proof of concept in a rat model and a perspective of therapeutic implications. Microbiome. 2020;8(1):153.
Korpela K, Helve O, Kolho KL, Saisto T, Skogberg K, Dikareva E, et al. Maternal Fecal Microbiota Transplantation in Cesarean-Born Infants Rapidly Restores Normal Gut Microbial Development: A Proof-of-Concept Study. Cell. 2020 ;183(2):324-334.e5.
Leite Nde C, Montes EG, Fisher SV, Cancian CR, de Oliveira JC, Martins-Pinge MC, et al. Splenectomy attenuates obesity and decreases insulin hypersecretion in hypothalamic obese rats. Metabolism. 2015;64(9):1122-33.
Tian C, Wang Y, La X, Li J, Zhang B. Spleen-kidney supplementing formula alleviates insulin resistance via regulating AKT/glycogen synthase kinase 3beta pathway in rats with type 2 diabetic induced by high-fat diet. J Tradit Chin Med. 2019;39(2):199-206.
da Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol Rep. 2020;8(19):e14607.
Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279.
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab. 2016;6(2):174-184.
Tan HC, Hsu JW, Kovalik JP, Eng A, Chan WH, Khoo CM, et al. Branched-Chain Amino Acid Oxidation Is Elevated in Adults with Morbid Obesity and Decreases Significantly after Sleeve Gastrectomy. J Nutr. 2020;150(12):3180-3189.
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315.
Engin AB. What Is Lipotoxicity? Adv Exp Med Biol. 2017;960:197-220.
Sheng Y, Xia F, Chen L, Lv Y, Lv S, Yu J, et al. Differential Responses of White Adipose Tissue and Brown Adipose Tissue to Calorie Restriction During Aging. J Gerontol A Biol Sci Med Sci. 2021;76(3):393-399.
Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. 2015;6:4.
Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011; 14(5):575-85.
Schulman IH, Zhou MS. Vascular insulin resistance: a potential link between cardiovascular and metabolic diseases. Curr Hypertens Rep. 2009;11(1):48-55.
Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18(6):774-800.
Polak K, Czyzyk A, Simoncini T, Meczekalski B. New markers of insulin resistance in polycystic ovary syndrome. J Endocrinol Invest. 2017;40(1):1-8.
Poretsky L, Grigorescu F, Seibel M, Moses AC, Flier JS. Distribution and characterization of insulin and insulin-like growth factor I receptors in normal human ovary. J Clin Endocrinol Metab. 1985;61(4):728-34.
Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20(4):535-82.
Yan X, Dai X, Wang J, Zhao N, Cui Y, Liu J. Prenatal androgen excess programs metabolic derangements in pubertal female rats. J Endocrinol. 2013;217(1):119-29.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Luis Jesuino Oliveira Andrade, Luís Matos de Oliveira, Alcina Maria Vinhaes Bittencourt, Gabriela Correia Matos de Oliveira

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.



