Metabólicos secundários com propriedades hipotensoras e mecanismos de ação sugeridos

Autores/as

DOI:

https://doi.org/10.11606/issn.2176-7262.rmrp.2025.216165

Palabras clave:

Plantas medicinais, Metabólitos secundários, Hipertensão arterial, Anti-hipertensivos

Resumen

As doenças cardiovasculares são uma das maiores causas de hospitalização e mortalidade no mundo, sendo a Hipertensão Arterial (HA) um importante fator de risco e grave problema de saúde pública. Com isso, diversas alternativas terapêuticas, com destaque às plantas medicinais, vêm sendo investigadas com intuito de se trazer à clínica fármacos eficazes com efeito hipotensor. Assim, o objetivo da presente revisão foi realizar um levantamento acerca de metabólitos secundários com ação hipotensora, bem como trazer possíveis mecanismos de ação dos mesmos. Usou-se as bases de dados Biblioteca Cochrane, Science Direct, Lilacs, Web of Science e PubMed com auxílio dos descritores: “Plants medicinal “OR “Herbal Medicine” OR “Oils volatile “OR “Alkaloids “OR “Diterpene Alkaloids” OR “Terpenes” OR “Sesquiterpenes “OR “Monoterpenes” OR “Isoprenoids” OR “Flavonoids” OR “tannins” OR “phenolic compounds” AND “Anti-hypertensive Agents”. O corte temporal foi de 2012 a 2022 selecionando-se os artigos nas linguagens português, espanhol e inglês. No processo de listagem de referências, remoção de duplicatas, triagem e avaliação de elegibilidade usou-se a plataforma Rayyan. Dos 6.196 artigos recuperados nas bases de dados e listas de referências, 17 foram incluídos. Os achados evidenciam que metabólitos secundários diversos, como óleos essenciais, alcalóides, flavonóides, fenóis, apresentam atividade hipotensora por diversos mecanismos, tais como bloqueio dos canais de cálcio, aumento na produção de óxido nítrico via eNOS, diminuição de angiotensina-II, bloqueio de receptores ganglionares. Ressalta-se ainda que muitos dos metabólitos apresentaram atividade antioxidante, o que pode indiretamente contribuir para o efeito hipotensor. O potencial terapêutico dos compostos supracitados faz-se relevante, uma vez que os efeitos mencionados foram encontrados nos principais modelos experimentais de HA, dentre os quais destaca-se: ratos espontanemente hipertensos (SHR), o qual mimetiza hipertensão essencial humana; modelo L-NAME que causa HA por vasoconstrição sistêmica devido a redução na síntese de óxido nítrico; modelo por uso de desoxicorticosterona (DOCA) que desencadeia a HA devido a retenção de sódio e água; modelo por administração de nicotina que induz aumento no estresse oxidativo, resultando em uma menor vasodilatação dependente do endotélio em decorrência da disfunção endotelial. Conclui-se que os metabólitos secundários com efeito hipotensor podem atuar por meio de diversos mecanismos de ação em diferentes sistemas de controle da pressão arterial, tornando-se com isso potentes alvos terapêuticos, o que pode contribuir para a inserção de novos fármacos anti-hipertensivos no mercado.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • José Lopes Pereira Júnior, Universidade Federal do Piaui

    Farmacêutico

  • Samuel de Sousa Pereira Araújo , Universidade Federal do Piaui

    Discente do curso de Educação Física

  • Juliana Alves da Silva, Universidade Federal do Piaui

    Discente do curso de Ciências Biológicas 

  • José Guilherme Veras de Assunção , Universidade Federal do Piaui

    Discente do curso de Educação Física

  • Ana Flávia Moraes da Silva , Universidade Federal do Piaui

    Discente do curso de Educação Física

  • João Paulo Jacob Sabino , Universidade Federal do Piaui

    Doutor em Fisiologia

Referencias

DIAS CABOCLO EK, et al. Fitoterápicos e plantas medicinais na prática dos profissionais de saúde em unidades de Estratégia Saúde da Família. Rev Ciênc Méd Biol. 2022;21(2):211-217.

MARTINS J, S B. Phytochemistry and pharmacology of anti-depressant medicinal plants: A review. Biomed Pharmacother. 2018;104:343-365.

URITU CM, et al. Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review. Pain Res Manag. 2018;2018:1–44.

SEN T, SAMANTA SK. Medicinal Plants, Human Health and Biodiversity: A Broad Review. In: MUKHERJEE J, editor. Biotechnological Applications of Biodiversity. Advances in Biochemical Engineering/Biotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 59–110.

GONÇALVES RN, et al. Plantas medicinais na Atenção Primária à Saúde: riscos, toxicidade e potencial para interação medicamentosa. Rev APS. 2022;25(1):120-153.

PEREIRA R, et al. Structural diversity and biological potential of secondary metabolites of species of Myroxylon Lf (Fabaceae): a review of the literature. Hoehnea. 2019;46.

LIMA NETO GA, et al. Quantification of secondary metabolites and antimicrobial and antioxidant activities of some medicinal plants from the Cerrado of the Mato Grosso. Rev Bras Plantas Med. 2015;17:1069-1077.

MAGALHÃES FJ, et al. Risk factors for cardiovascular diseases in nursing professionals: health promotion strategies. Rev Bras Enferm. 2014;67:394-400.

LIMA DBS, et al. Associação entre adesão ao tratamento e tipos de complicações cardiovasculares em pessoas com hipertensão arterial. Texto & Contexto-Enfermagem. 2016;25.

GOROSTIDI M, et al. 2022 Practice guidelines for the management of arterial hypertension of the Spanish Society of Hypertension. Hipertension y riesgo vascular. 2022; p. S1889-1837 (22) 00066.

AJEBLI M, KHAN H, EDDOUKS M. Natural alkaloids and diabetes mellitus: A review. Endocrine, Metabolic & Immune Disorders-Drug Targets. 2021;21(1):111-130.

RIVERA SL, MARTIN J, LANDRY J. Acute and Chronic Hypertension. Crit Care Nurs Clin North Am. 2019;31(1):97-108.

GALVÃO TF, PEREIRA MG. Revisões sistemáticas da literatura: passos para sua elaboração. Epidemiologia e serviços de saúde. 2014;23:183-184.

CUNHA GH, et al. Comparative study of the antihypertensive effects of hexane, chloroform and methanol fractions of essential oil of Alpinia zerumbet in rats Wistar. Rev Bras Plantas Med. 2016;18:113-124.

AHMAD M, et al. Blood pressure-lowering and cardiovascular effects of plumbagin in rats: An insight into the underlying mechanisms. Current Research in Pharmacology and Drug Discovery. 2022;3:100139.

LAGUNAS-HERRERA H, et al. Acute and chronic antihypertensive effect of fractions, tiliroside and scopoletin from Malva parviflora. Biological and Pharmaceutical Bulletin. 2019;42(1):18-25.

DOLINSKY VW, et al. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim Biophys Acta Mol Basis Dis. 2013;1832(10):1723-1733.

QIU Z, et al. Total flavonoids from Ampelopsis megalophylla suppress proliferation of vascular smooth muscle cells in vivo and in vitro. Braz J Pharm Sci. 2018;53.

MUJTABA N, et al. Isolation and characterization of antihypertensive peptides from soybean protein. Braz J Pharm Sci. 2021;57.

HOU Z, et al. Antihypertensive effects of Tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats. Food & function. 2017;8(11):4217-4228.

PIRES AF, et al. The role of endothelium in the vasorelaxant effects of the essential oil of Ocimum gratissimum in aorta and mesenteric vascular bed of rats. Can J Physiol Pharmacol. 2012;90(10):1380-1385.

ZHANG HP, et al. Hypotensive Effect of Magnolin on Spontaneously Hypertensive Rats by Reversing Nitric Oxide Synthase Uncoupling. Rev Bras Farmacogn. 2022;32(1):65-73.

VEERAPPAN R, MALARVILI T. Chrysin pretreatment improves angiotensin system, cGMP concentration in L-NAME induced hypertensive rats. Indian Journal of clinical biochemistry. 2019;34:288-295.

QIAN Z, et al. Icarrin prevents cardiomyocyte apoptosis in spontaneously hypertensive rats by inhibiting endoplasmic reticulum stress pathways. Journal of Pharmacy and Pharmacology. 2021;73(8):1023-1032.

SILVA GC, et al. Mechanism of the antihypertensive and vasorelaxant effects of the flavonoid tiliroside in resistance arteries. Planta medica. 2013;79(12):1003-1008.

ARIAS-DURÁN L, et al. Antihypertensive and vasorelaxant effect of leucodin and achillin isolated from Achillea millefolium through calcium channel blockade and NO production: In vivo, functional ex vivo and in silico studies. Journal of Ethnopharmacology. 2021;273:113948.

DOS SANTOS RB, et al. Acute autonomic effects of rose oxide on cardiovascular parameters of Wistar and spontaneously hypertensive rats. Life Sci. 2021;287:120107.

MOON HK, et al. Effects of 1, 8-cineole on hypertension induced by chronic exposure to nicotine in rats. Journal of Pharmacy and Pharmacology. 2014;66(5):688-693.

SABINO CKB, et al. Cardiovascular effects induced by α‐terpineol in hypertensive rats. Flavour Fragr J. 2013;28(5):333-339.

CAMARGO SB, et al. Antihypertensive potential of linalool and linalool complexed with β-cyclodextrin: Effects of subchronic treatment on blood pressure and vascular reactivity. Biochemical pharmacology. 2018;151:38-46.

AL GHORANI H, et al. Arterial hypertension–Clinical trials update 2021. Nutr Metab Cardiovasc Dis. 2022;32(1):21-31.

DO NASCIMENTO JÚNIOR CS, et al. Análise qualitativa do perfil químico de plantas medicinais do horto das Faculdades Nova Esperança. Res Soc Dev. 2020;9(9):e816998033.

LINS JS, et al. Busca por metabólitos secundários na Espécie erythroxylum rimosum o. E. Schulz. 2018.

SILVA CMA. Metabólitos secundários de plantas do semi-árido de Pernambuco-uma inovação no controle de fitopatógenos. 2013. Dissertação de Mestrado. Universidade Federal de Pernambuco.

O'CONNOR SE. Engineering of secondary metabolism. Annu Rev Genet. 2015;49:71-94.

OWUSU ADJEI M, et al. MicroRNAs roles in plants secondary metabolism. Plant Signal Behav. 2021;16(7):1915590.

LOPES HF. Novas Perspectivas no Tratamento da Hipertensão. Arq Bras Cardiol. 2021;116:452-453.

JOHANSSON M, FRIBERG P. Role of the sympathetic nervous system in human renovascular hypertension. Curr Hypertens Rep. 2000;2(3):319-326.

TE RIET L, et al. Hypertension: renin–angiotensin–aldosterone system alterations. Circ Res. 2015;116(6):960-975.

MUÑOZ-DURANGO N, et al. Role of the renin-angiotensin-aldosterone system beyond blood pressure regulation: molecular and cellular mechanisms involved in end-organ damage during arterial hypertension. Int J Mol Sci. 2016;17(7):797.

GONSALEZ SR, et al. Inadequate activity of the local renin-angiotensin-aldosterone system during high salt intake: impact on the cardio-renal axis. Braz J Nephrol. 2018;40:170-178.

VIOLA A, et al. Renin and aldosterone measurements in the management of arterial hypertension. Horm Metab Res. 2015;47(06):418-426.

ORTIZ RM, et al. The Renin-Angiotensin-Aldosterone System in Metabolic Diseases and Other Pathologies. Int J Mol Sci. 2023;24(8):7413.

GRÖNHAGEN-RISKA C, FYHRQUIST F. Purification of human lung angiotensin-converting enzyme. Scand J Clin Lab Invest. 1980;40(8):711-719.

GUANG C, et al. Three key proteases–angiotensin-I-converting enzyme (ACE), ACE2 and renin–within and beyond the renin-angiotensin system. Arch Cardiovasc Dis. 2012;105(6-7):373-385.

VEERAPPAN R, MALARVILI T. Chrysin pretreatment improves angiotensin system, cGMP concentration in L-NAME induced hypertensive rats. Indian Journal of clinical biochemistry. 2019;34:288-295.

GANESHPURKAR A, SALUJA AK. The pharmacological potential of rutin. Saudi pharmaceutical journal. 2017;25(2):149-164.

GRIFFITH TM, et al. The nature of endothelium-derived vascular relaxant factor. Nature. 1984;308(5960):645-647.

GOLSHIRI K, et al. The importance of the nitric oxide-cGMP pathway in age-related cardiovascular disease: Focus on phosphodiesterase-1 and soluble guanylate cyclase. Basic & clinical pharmacology & toxicology. 2020;127(2):67-80.

LEO F, et al. Red blood cell and endothelial eNOS independently regulate circulating nitric oxide metabolites and blood pressure. Circulation. 2021;144(11):870-889.

BONADIMAN BS, et al. Avaliação do perfil oxidativo-inflamatório e do sistema purinérgico em células do epitélio pigmentar da retina expostas ao extrato etanólico de Astrocaryum aculeatum. 2021.

KHATTAB MM, NAGI MN. Thymoquinone supplementation attenuates hypertension and renal damage in nitric oxide deficient hypertensive rats. Phytotherapy Research. 2007;21(5):410-414

MIILSCH A, BUSSE R . NG-nitro-L-arginine (N5-[imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from l-arginine. Naunyn-Schmiedeberg’s Archives of Pharmacology, 341–341(1–2)

YAHYAZADEH R, et al. The effect of Elettaria cardamomum (cardamom) on the metabolic syndrome: Narrative review. Iran J Basic Med Sci. 2021;24(11):1462.

LI M, et al. Polyphenol mechanisms against gastric cancer and their interactions with gut microbiota: A review. Curr Oncol. 2022;29(8):5247-5261.

LUAN Y, et al. Therapeutic effects of baicalin on monocrotaline-induced pulmonary arterial hypertension by inhibiting inflammatory response. Int Immunopharmacol. 2015;26(1):188-193.

SUN ZG, et al. Recent Developments of Flavonoids with Various Activities. Curr Top Med Chem. 2022;22(4):305-329.

VISSENAEKENS H, et al. Flavonoids and cellular stress: a complex interplay affecting human health. Crit Rev Food Sci Nutr. 2022;62(31):8535-8566.

MAALIKI D, et al. Flavonoids in hypertension: a brief review of the underlying mechanisms. Curr Opin Pharmacol. 2019;45:57-65.

SERAFINI M, PELUSO I, RAGUZZINI A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 2010;69(3):273-278.

SECK SM, et al. Clinical efficacy of African traditional medicines in hypertension: a randomized controlled trial with Combretum micranthum and Hibiscus sabdariffa. J Hum Hypertens. 2018;32(1):75-81.

CAPRIC V, et al. The Role of the Renin-Angiotensin-Aldosterone System in Cardiovascular Disease: Pathogenetic Insights and Clinical Implications. In: Renin-Angiotensin Aldosterone System. IntechOpen; 2021.

FERRENTINO G, et al. Extraction of essential oils from medicinal plants and their utilization as food antioxidants. Curr Pharm Des. 2020;26(5):519-541.

PATEIRO M, et al. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res Int. 2018;113:156-166.

CHERKAOUI-TANGI K, ISRAILI ZH, LYOUSSI B. Vasorelaxant effect of essential oil isolated from Nigella sativa L. seeds in rat aorta: Proposed mechanism. Pakistan Journal of Pharmaceutical Sciences. 2016;29(1).

RIVERO-VILCHES F, et al. Guanylate cyclases: physiological processes mediated by cyclic GMP. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia. 2001;21(3):233-239.

VENTURA ALM, et al. Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo. Archives of Clinical Psychiatry (São Paulo). 2010;37:66-72.

HAMMOND C. The ionotropic nicotinic acetylcholine receptors. Cell. Mol. Neurophysiol. Elsevier Ltd; 2015. p. 171e198.

LUCA SV, et al. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr. 2020;60(4):626-659.

BRUNO RM, GHIADONI L. Polyphenols, antioxidants and the sympathetic nervous system. Curr Pharm Des. 2018;24(2):130-139.

RASINES-PEREA Z, TEISSEDRE PL. Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules. 2017;22(1):68.

MBAVENG AT, ZHAO Q, KUETE V. Harmful and protective effects of phenolic compounds from African medicinal plants. In: Toxicological survey of African medicinal plants. Elsevier; 2014. p. 577-609

BOURICHE H, et al. Anti-inflammatory, free radical-scavenging, and metal-chelating activities of Malva parviflora. Pharmaceutical Biology. 2011;49(9):942-946.

SHALE TL, STIRK WA, VAN STADEN J. Variation in antibacterial and anti-inflammatory activity of different growth forms of Malva parviflora and evidence for synergism of the anti-inflammatory compounds. J Ethnopharmacol. 2005;96(1-2):325-330.

KATHURIA S, MAHADEVAN N, BALAKUMAR P. Possible involvement of PPARγ-associated eNOS signaling activation in rosuvastatin-mediated prevention of nicotine-induced experimental vascular endothelial abnormalities. Molecular and cellular biochemistry. 2013;374(1-2):61-72.

BERS DM, PEREZ-REYES E. Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovascular research. 1999;42(2):339-360.

NARGEOT J, LORY P, RICHARD S. Molecular basis of the diversity of calcium channels in cardiovascular tissues. European heart journal. 1997;18(Suppl A):15-26.

SINHA AD, AGARWAL R. Clinical pharmacology of antihypertensive therapy for the treatment of hypertension in CKD. Clinical Journal of the American Society of Nephrology: CJASN. 2019;14(5):757.

ELLIOTT WJ, RAM CVS. Calcium channel blockers. The Journal of Clinical Hypertension. 2011;13(9):687.

CARVALHO MHC, et al. Hipertensão arterial: o endotélio e suas múltiplas funções. Rev Bras Hipertens. 2001;8(1):76-88.

IBARROLA DA, et al. The antihypertensive and diuretic effect of crude root extract and saponins from Solanum sisymbriifolium Lam., in L-NAME-induced hypertension in rats. Journal of Ethnopharmacology. 2022;298:115605.

MARTÍNEZ-HERNÁNDEZ GB, et al. Anti-arthritic and anti-inflammatory effects of extract and fractions of Malva parviflora in a mono-arthritis model induced with kaolin/carrageenan. Naunyn-Schmiedeberg's Archives of Pharmacology. 2020;393:1281-1291.

LUCAS FILHO, MD. Estudo fitoquímico de espécies do gênero Erythroxylum com potencial atividade vasodilatadora e inibidora da enzima conversora de angiotensina. 2009.

TOMASSONI, D, et al. Effect of thioctic acid enantiometers on cardiac and renal hypertensive damage. Italian Journal of Anatomy and Embryology, v. 117, n. 2, p. 191, 2012.

Publicado

2025-10-01

Número

Sección

Artigo de Revisão

Cómo citar

1.
Pereira Júnior JL, Araújo S de SP, Silva JA da, Assunção JGV de, Silva AFM da, Sabino JPJ. Metabólicos secundários com propriedades hipotensoras e mecanismos de ação sugeridos. Medicina (Ribeirão Preto) [Internet]. 2025 Oct. 1 [cited 2025 Dec. 29];58(1):e-216165. Available from: https://revistas.usp.br/rmrp/article/view/216165