Análise histológica de lesão medular tratada com membrana amniótica
DOI:
https://doi.org/10.11606/issn.2176-7262.rmrp.2025.222620Palavras-chave:
Lesão medular, Membrana amniótica, Biomaterial, Cicatrização, Medicina regenerativaResumo
A lesão medular (LM) é uma das síndromes mais prejudiciais que afeta os humanos como consequência da destruição neuronal e da interrupção da transmissão do impulso nervoso entre os axônios. A condução das respostas motoras, sensoriais e autonômicas abaixo do nível da lesão fica gravemente comprometida, gerando custos elevados de tratamento para o sistema de saúde, com redução da qualidade de vida, estimulando pesquisas por novos protocolos de tratamento. Este estudo teve como objetivo avaliar a eficácia de um biomaterial, a membrana amniótica (MA), no tratamento da LM induzida experimentalmente. 15 ratos adultos foram divididos em três grupos (n = 5): S (Sham), L (LM sem tratamento) e AM (LM tratado com MA). A lesão medular foi induzida na região T9-T10, por trauma direto, pela queda livre de um peso (10 g, borda plana de 2 mm) preso em uma mini guilhotina acima da medula espinhal exposta. Um fragmento de MA, obtido de placenta humana após consentimento materno, foi aplicado na área lesionada apenas no grupo AM. Após 28 dias, os espécimes da área da lesão medular foram excisados e submetidos a procedimentos histológicos de rotina. Os dados do escore semi quantitativo, obtidos a partir de esquema que atribuu diferentes escores às áreas da medula espinhal, e da análise quantitativa foram submetidos a testes estatísticos não paramétricos e paramétricos. Os resultados revelaram que o Grupo S apresentou tecido medular sem alterações (escore 0), enquanto o Grupo L apresentou numerosas áreas de cavitação nas regiões dorsal e lateral da substância branca e cinzenta (escore 10,0, p≤0,001) com intenso infiltrado inflamatório. O grupo AM exibiu pequenas áreas de cavitação nas regiões dorsal e lateral da substância branca e em parte das colunas dorsais, na substância cinzenta (escore 1,8, p≤0,001), com poucas células inflamatórias. Os resultados sugerem a eficácia da MA no tratamento da LM induzida, caracterizada pela redução na evolução dos processos inflamatórios e degenerativos no tecido nervoso central em comparação ao grupo não tratado.
Downloads
Referências
Shende P, Subedi M. Pathophysiology, Mechanisms and Applications of Mesenchymal Stem Cells for the Treatment of Spinal Cord Injury. Biomedicine and Pharmacotherapy 2017;91:693–706; doi: 10.1016/j.biopha.2017.04.126.
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers 2017;3:17018; doi: 10.1038/nrdp.2017.18.
Gazdic M, Volarevic V, Arsenijevic A, et al. Stem Cells and Labeling for Spinal Cord Injury. Int J Mol Sci 2017;18(1); doi: 10.3390/ijms18010006.
Zhang C, Rong W, Zhang GH, et al. Early electrical field stimulation prevents the loss of spinal cord anterior horn motoneurons and muscle atrophy following spinal cord injury. Neural Regen Res 2018;13(5):869–876; doi: 10.4103/1673-5374.232483.
Anjum A, Yazid MD, Daud MF, et al. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci 2020;21(20):1–35; doi: 10.3390/ijms21207533.
Fouad K, Popovich PG, Kopp MA, et al. The Neuroanatomical–Functional Paradox in Spinal Cord Injury. Nat Rev Neurol 2021;17(1):53–62; doi: 10.1038/s41582-020-00436-x.
Pavlova V, Filipova E, Uzunova K, et al. Pioglitazone Therapy and Fractures: Systematic Review and Meta- Analysis. Endocr Metab Immune Disord Drug Targets 2018;18(5):502–507; doi: 10.2174/1871530318666180423121833.
Hachem LD, Fehlings MG. Pathophysiology of Spinal Cord Injury. Neurosurg Clin N Am 2021;32(3):305–313; doi: 10.1016/j.nec.2021.03.002.
Karsy M, Hawryluk G. Modern Medical Management of Spinal Cord Injury. Curr Neurol Neurosci Rep 2019;19(9); doi: 10.1007/s11910-019-0984-1.
Cofano F, Boido M, Monticelli M, et al. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options Limitations, and Future of Cell Therapy. Int J Mol Sci 2019;20(11); doi: 10.3390/ijms20112698.
Silini AR, Magatti M, Cargnoni A, et al. Is Immune Modulation the Mechanism Underlying the Beneficial Effects of Amniotic Cells and Their Derivatives in Regenerative Medicine? Cell Transplant 2017;26(4):531–539; doi: 10.3727/096368916X693699.
Fénelon M, Catros S, Meyer C, et al. Applications of Human Amniotic Membrane for Tissue Engineering. Membranes (Basel) 2021;11(6); doi: 10.3390/membranes11060387.
Mamede KM, Sant’Anna LB. Antifibrotic effects of total or partial application of amniotic membrane in hepatic fibrosis. An Acad Bras Cienc 2019;91(3); doi: 10.1590/0001-3765201920190220.
Faramarzi M, Kaboodkhani R, Roosta S, et al. Application of amniotic membrane for covering mastoid cavity in canal wall down mastoidectomy. Laryngoscope 2019;129(6):1453–1457; doi: 10.1002/lary.27638.
Nicodemo M de C, das Nevesii LR, Aguiar JC, et al. Amniotic membrane as an option for treatment of acute Achilles tendon injury in rats. Acta Cir Bras 2017;32(2):125–139; doi: 10.1590/s0102-865020170205.
Arrizabalaga JH, Nollert MU. Human Amniotic Membrane: A Versatile Scaffold for Tissue Engineering. ACS Biomater Sci Eng 2018;4(7):2226–2236; doi: 10.1021/acsbiomaterials.8b00015.
Shaw KA, Parada SA, Gloystein DM, et al. The Science and Clinical Applications of Placental Tissues in Spine Surgery. Global Spine J 2018;8(6):629–637; doi: 10.1177/2192568217747573.
Walkden A. Amniotic Membrane Transplantation in Ophthalmology: An Updated Perspective. Clinical Ophthalmology 2020;14:2057–2072; doi: 10.2147/OPTH.S208008.
Duerr RA, Ackermann J, Gomoll AH. Amniotic-Derived Treatments and Formulations. Clin Sports Med 2019;38(1):45–59; doi: 10.1016/j.csm.2018.08.002.
Santos J de AF, Nicolau RA, Sant’Anna LB, et al. Diabetic Foot Wounds Treated With Human Amniotic Membrane and Low-level Laser Therapy: A Pilot Clinical Study. Wound Manag Prev 2021;67(8):16–23; doi: 10.25270/wmp.2021.8.1623.
Marsh KM, Ferng AS, Pilikian T, et al. Anti-inflammatory properties of amniotic membrane patch following pericardiectomy for constrictive pericarditis. J Cardiothorac Surg 2017;12(1); doi: 10.1186/s13019-017-0567-7.
Pogozhykh O, Prokopyuk V, Figueiredo C, et al. Placenta and Placental Derivatives in Regenerative Therapies: Experimental Studies, History, and Prospects. Stem Cells Int 2018;2018; doi: 10.1155/2018/4837930.
Leal-Marin S, Kern T, Hofmann N, et al. Human Amniotic Membrane: A Review on Tissue Engineering, Application, and Storage. J Biomed Mater Res B Appl Biomater 2021;109(8):1198–1215; doi: 10.1002/jbm.b.34782.
Nejad AR, Hamidieh AA, Amirkhani MA, et al. Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta 2021;103:104–119; doi: 10.1016/j.placenta.2020.10.026.
Sant’Anna LB, Brito FS, Barja PR, et al. Long-term effects of human amniotic membrane in a rat model of biliary fibrosis. Brazilian Journal of Medical and Biological Research 2017;50(7); doi: 10.1590/1414-431X20175692.
Nicodemo M de C, Das Neves LR, Aguiar JC, et al. Amniotic membrane as an option for treatment of acute achilles tendon injury in rats. Acta Cir Bras 2017;32(2):125–139; doi: 10.1590/s0102-865020170205.
Falavigna A, Cechetti F, Finger G, et al. Experimental Model of Spinal Cord Injury (Sci) in Rats: Management Guidelines. 2013.
Paula AA, Nicolau RA, Lima M de O, et al. “Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury.” Lasers Med Sci 2014;29(6):1849–1859; doi: 10.1007/s10103-014-1586-4.
Kjell J, Olson L. Rat Models of Spinal Cord Injury: From Pathology to Potential Therapies. DMM Disease Models and Mechanisms 2016;9(10):1125–1137; doi: 10.1242/dmm.025833.
Shen H, Fan C, You Z, et al. Advances in Biomaterial-Based Spinal Cord Injury Repair. Adv Funct Mater 2022;32(13); doi: 10.1002/adfm.202110628.
Huang L, Fu C, Xiong F, et al. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant 2021;30; doi: 10.1177/0963689721989266.
Moraes JTGDO, Costa MM, Alves PCS, et al. Effects of Preservation Methods in the Composition of the Placental and Reflected Regions of the Human Amniotic Membrane. Cells Tissues Organs 2021;210(1):66–76; doi: 10.1159/000515448.
Fu H, Zhao Y, Hu D, et al. Depletion of microglia exacerbates injury and impairs function recovery after spinal cord injury in mice. Cell Death Dis 2020;11(7); doi: 10.1038/s41419-020-2733-4.
Gao L, Peng Y, Xu W, et al. Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020;2020; doi: 10.1155/2020/2853650.
Xu H, Zhang J, Tsang KS, et al. Therapeutic Potential of Human Amniotic Epithelial Cells on Injuries and Disorders in the Central Nervous System. Stem Cells Int 2019;2019; doi: 10.1155/2019/5432301.
Moraes JTGDO, Costa MM, Alves PCS, et al. Effects of Preservation Methods in the Composition of the Placental and Reflected Regions of the Human Amniotic Membrane. Cells Tissues Organs 2021;210(1):66–76; doi: 10.1159/000515448.
Zhou HJ, Wang LQ, Xu QS, et al. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells. Exp Cell Res 2016;349(1):60–67; doi: 10.1016/j.yexcr.2016.09.020.
Ryu HH, Kang BJ, Park SS, et al. Comparison of Mesenchymal Stem Cells Derived from Fat, Bone Marrow, Wharton’s Jelly, and Umbilical Cord Blood for Treating Spinal Cord Injuries in Dogs. Journal of Veterinary Medical Science 2012;74(12):1617–1630; doi: 10.1292/jvms.12-0065.
Neves MF, Fonseca JLR, Carvalho PCS, et al. Analysis of Movements in Spinal Cord Hemisection Treatment with Amniotic Membrane – Preclinical Study. Asian Journal of Physical and Chemical Sciences 2022;28–37; doi: 10.9734/ajopacs/2022/v10i130148.
Kroner A, Rosas Almanza J. Role of Microglia in Spinal Cord Injury. Neurosci Lett 2019;709; doi: 10.1016/j.neulet.2019.134370.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Débora Campos Chaves Chaves, Leonardo Borges de Lima, Luciana Barros Sant'Anna, Mario Oliveira Lima, Emilia Angela Loschiavo Arisawa

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.



