Estimating the share of ultra-processed foods in Brazilian municipalities
DOI:
https://doi.org/10.11606/s15188787.2025059006615Keywords:
Ultra-Processed Foods, Socioeconomic Factors, Prediction Models, EpidemiologyAbstract
OBJECTIVE: To estimate the caloric share of ultra-processed foods (% UPF) in the 5,570 Brazilian municipalities. METHODS: The estimation of % UPF in municipalities was performed using a statistical prediction model based on data from 46,164 individuals aged over >10 years who participated in the Household Budget Survey (HBS 2017–2018). Multiple linear regression was used to estimate the average % UPF (measured through two 24-hour dietary recalls) based on predictor variables (sex, age, income, education, race/color, urbanity, federative units, and geographic location). The model’s adequacy was assessed through residual analysis and by comparing predicted values with those directly measured in POF 2017–2018 using Lin’s concordance correlation coefficient (CCC). The linear coefficients obtained from the multiple linear regression model were applied to the sociodemographic data from the 2010 Census (measured similarly to POF) to estimate the % UPF for each municipality. RESULTS: The statistical model proved adequate, showing normally distributed residuals and a CCC of 0.87, indicating almost perfect agreement. There was heterogeneity in the distribution of % UPF estimates, ranging from 5.75% in Aroeiras do Itaim (PI) to 30.5% in Florianópolis (SC). % UPF estimates were higher (>20%) in municipalities from the South region and the state of São Paulo. Capitals had higher estimates of caloric contribution from ultra-processed foods compared to other municipalities in their states. CONCLUSIONS: The predictive model revealed differences in % UPF among Brazilian municipalities. The generated estimates can contribute to monitoring ultra-processed food consumption at the municipal level and support the development of public policies focused on promoting healthy eating.
References
Monteiro CA, Cannon G, Levy RB, Moubarac JC, Louzada ML, Rauber F, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019 Apr;22(5):936-41. https://doi.org/10.1017/S1368980018003762.
Martínez Steele E, Buckley JP, Monteiro CA. Ultra-processed food consumption and exposure to acrylamide in a nationally representative sample of the US population aged 6 years and older. Prev Med. 2023 Sep;174:107598.
https://doi.org/10.1016/j.ypmed.2023.107598.
Martínez Steele E, Khandpur N, Louzada MLC, Monteiro CA. Association between dietary contribution of ultra-processed foods and urinary concentrations of phthalates and bisphenol in a nationally representative sample of the US population aged 6 years and older. PLoS One. 2020 Jul;15(7):e0236738. https://doi.org/10.1371/journal.pone.0236738.
Martini D, Godos J, Bonaccio M, Vitaglione P, Grosso G. Ultra-processed foods and nutritional dietary profile: a meta-analysis of nationally representative samples. Nutrients. 2021 Sep;13(10):3390. https://doi.org/10.3390/nu13103390.
Lane MM, Gamage E, Du S, Ashtree DN, McGuinness AJ, Gauci S, et al. Ultra-processed food exposure and adverse health outcomes: umbrella review of epidemiological meta-analyses. BMJ. 2024 Feb;384:e077310. https://doi.org/10.1136/bmj-2023-077310.
Anastasiou K, Baker P, Hadjikakou M, Hendrie GA, Lawrence M. A conceptual framework for understanding the environmental impacts of ultra-processed foods and implications for sustainable food systems. J Clean Prod. 2022 Sep;368:133155. https://doi.org/10.1016/j.jclepro.2022.133155.
Ministério da Saúde (BR). Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Guia alimentar para a população brasileira 2a ed. Brasília, DF Ministério da Saúde; 2014 [citado 28 de setembro de 2022]. Disponível em: https://www.gov.br/saude/pt-br/ assuntos/saude-brasil/publicacoes-para-promocao-a-saude/guia_alimentar_populacao_ brasileira_2ed.pdf/view.
Louzada MLC, Cruz GL, Silva KAAN, Grassi AGF, Andrade GC, Rauber F, et al. Consumo de alimentos ultraprocessados no Brasil: distribuição e evolução temporal 2008-2018. Rev Saude Pública. 2023;57(1):12. https://doi.org/10.11606/s1518-8787.2023057004744.
Instituto Brasileiro de Geografia e Estatística. Pesquisa de orçamentos familiares 2017-2018: avaliação nutricional da disponibiliade domiciliar de alimentos no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2020.
Instituto Brasileiro de Geografia e Estatística. Pesquisa de orçamentos familiares 2017-2018: análise do consumo alimentar pessoal no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2020.
Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989 Mar;45(1):255-68. https://doi.org/10.2307/2532051.
Silva MA, Rodrigues LB, Brito SA, Lage LG, Louzada ML C. Aquisição de alimentos que compõem a nova cesta básica pelas famílias brasileiras de baixa renda em 2017-18: distribuição socioeconômica e demográfica. SciELO Preprints. 2024. https://doi.org/10.1590/SciELOPreprints.9349.
Levy RB, Andrade GC, Cruz GL, Rauber F, Louzada MLC, Claro RM, et al. Three decades of household food availability according to NOVA - Brazil, 1987-2018. Rev Saude Publica. 2022;56:75. https://doi.org/10.11606/s1518-8787.2022056004570.
Rio de Janeiro. Decreto RIO no 52842, de 11 de junho de 2023. Regulamenta a Lei Municipal no 7.987, de 11 de julho de 2023, que institui ações de combate à obesidade infantil, e dá outras providências. Diario Oficial Municipio Rio de Janeiro; 12 jul 2023.
Niterói. Decreto No 15.457/2024. Regulamenta a Lei no 2659/2009 que proíbe a comercialização, a aquisição, a confecção, a distribuição e a publicidade de produtos que contribuem para a obesidade infantil e dá outras providências. Niterói. 7 jun 2024.
Ministério do Desenvolvimento e Assistência Social (BR). Decreto no 11.822, de 12 de dezembro de 2023. Institui a Estratégia Nacional de Segurança Alimentar e Nutricional nas Cidades. Brasília, DF: Ministério do Desenvolvimento e Assistência Social; 2023.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maria Laura da Costa Louzada, Leandro Teixeira Cacau, Maria Helena D’Aquino Benicio, Renata Bertazzi Levy

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 403892/2021-0