Advertising efficiency in applied models from the perspective of connective advertising
DOI:
https://doi.org/10.11606/issn.1984-5057.v17i1e236146Keywords:
advertising, efficiency, innovation, intelligent technologies, applied modelsAbstract
The field of advertising has historically maintained strong connections with other domains, especially technology, from which it draws support for avant-garde actions. Currently, in its interplay with intelligent technologies, discussions have emerged around innovation and efficiency, driven by the transformation of the media ecosystem and the rise of digital advertising. In this context, this study analyzes how advertising efficiency relates to innovation in research focused on technological models applied to the sector. It draws from a broader investigation that seeks to understand how advertising connects with intelligent technologies from the perspective of applied experiments or models related to efficiency. The findings present perspectives for updating the concept of efficiency in the advertising field, in connection with digital and intelligent technologies and environments.
Downloads
References
ASSMUS, Gert; FARLEY, John U.; LEHMANN, Donald R. How advertising affects sales: A Meta-analysis of econometric results. Journal of Marketing Research, v. 21, n. 1, p. 65-74, 1984. https://doi.org/10.2307/3151793
BARDIN, Laurence. Análise de conteúdo. Lisboa: Edições 70, 1977.
BAKHTHEMMAT, Ali.; IZADI, Mohammad. Communities Detection for Advertising by Futuristic Greedy Method with Clustering Approach. Big Data, v. 9, n. 1, p. 22-40, 2021. https://doi.org/10.1089/big.2020.0133
BAUER, Martin W.; GASKELL, George. Pesquisa qualitativa com texto, imagem e som: um manual prático. 2. ed. Petrópolis: Vozes, 2002.
CHEN, Jin et al. Efficient Optimal Selection for Composited Advertising Creatives with Tree Structure. Proceedings of the AAAI Conference on Artificial Intelligence, v. 35, n. 5, p. 3967-3975, 2021a. https://doi.org/10.1609/aaai.v35i5.16516
CHEN, Jin; XU, Ju; JIANG, Gangwei; GE, Tiezheng; ZHANG, Zhiqiang; LIAN, Defu; ZHENG, Kai. Automated creative optimization for e-commerce advertising. In: PROCEEDINGS OF THE WEB CONFERENCE, 21., Ljubljana, Slovenia. Proceedings […] ACM New York, USA, 2021b. https://doi.org/10.1145/3442381.3449909
CORREA, Rodrigo Stéfani; RABAIOLLI, Janderle. Publicidade conectiva, diretrizes para novas pesquisas. In: PEREZ, Clotilde; TRINDADE, Eneus; MEIRA, Karla; ORLANDINI, Rafael (org.). XI Propesq PP Light Plus 2021 – Encontro Nacional de Pesquisadores em Publicidade e Propaganda: artigos completos e selecionados. São Paulo: ECA-USP: ABP2, 2022. p. 57-70. Disponível em: https://files.cercomp.ufg.br/weby/up/76/o/Publicidade_e_marketing_na_cultura_digital.pdf. Acesso em: 15 jan. 2025.
CORREA, Rodrigo Stéfani; RABAIOLLI, Janderle. Publicidade conectiva: perspectivas conceituais. In: MEDEIROS, Magno; FROES, Thalita Sasse; COELHO, Rafael Franco (org.). Publicidade e marketing na cultura digital. p. 18-40. Goiânia : Cegraf UFG, 2023a. https://files.cercomp.ufg.br/weby/up/76/o/Publicidade_e_marketing_na_cultura_digital.pdf. Acesso em: 15 jan. 2025.
CORREA, Rodrigo Stéfani; RABAIOLLI, Janderle. A publicidade em conexão com tecnologias e inovação: Análise de publicações especializadas de mercado. Comunicação, Mídia e Consumo, São Paulo, v. 20, n. 59, p. 503-552, 2023b. https://doi.org/10.18568/cmc
DHALLA, Nariman K. Assessing the Long-Term Value of Advertising. Havard Business Review, 1978. Disponível em: https://hbr.org/1978/01/assessing-the-long-term-value-of-advertising. Acesso em: 15 jan. 2025.
FLICK, Uwe; KARDORFF, Ernst von; STEINKE, Ines. A companion to qualitative research. London: SAGE Publications, 2004.
FOUCAULT, Michel. O nascimento da biopolítica. São Paulo: Martins Fontes, 2004.
GENG, Tong et al. Comparison lift: Bandit-based experimentation system for online advertising. arXiv, arXiv:2009.07899v1, 2020. https://doi.org/10.48550/arXiv.2009.07899
HASSANPOUR, Masoud et al. Improving the accuracy of the video popularity prediction models through user grouping and video popularity classification. Journal ACM Transactions, v. 14, n, 1, 4, 2020. https://doi.org/10.1145/3372499
KUMAR, Ajay; SHANKARB, Ravi; ALJOHANIC, Naif Radi. A big data driven framework for demand-driven forecasting with effects of marketing-mix variables. Journal Industrial Marketing Management, v. 90, p. 493-507, 2020. https://doi.org/10.1016/j.indmarman.2019.05.003
LI, Hairong. Special Section Introduction: Artificial intelligence and advertising. Journal of Advertising, v. 48, n. 4, p. 333-337, 2019. https://doi.org/10.1080/00913367.2019.1654947
LI, Young et al. Smart Targeting: A Relevance-driven and Configurable Targeting Framework for Advertising System. Publication History, p. 720-725, 2020. https://doi.org/10.1145/3383313.3418481
MARETTI, Vinícius; AFONSO JÚNIOR, Paulo; COSTA, Heitor. Uma revisão sistemática da literatura sobre comunicação no contexto da gerência de projetos de sistemas de informação. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 12., 2016, Florianópolis. Anais […]. Porto Alegre: Sociedade Brasileira de Computação, 2016. p. 84-91.
SHETH, Jagdish N.; SISSODIA, Rajendra S. Marketing Productivity: Issues and Analysis. Journal of Business Research, v. 55, n. 5, p. 349-362, 2002. https://doi.org/10.1016/S0148-2963(00)00164-8
SMITH, D. C.; PARK, C. W. The effects of brand extensions on market share and advertising effectiveness. Journal of Marketing Research, v. 29, n. 3, 296-313, 1992. https://doi.org/10.2307/3172741
TAYLOR, Frederick Wislow. Princípios de administração científica. Rio de Janeiro: LTC, 2020.
TAO, Ming et al. Big Data Based E-commerce Search Advertising Recommendation. In: VAIDYA, J.; ZHANG, X.; Li, J. (ed.) Cyberspace Safety and Security. CSS 2019. Lecture Notes in Computer Science, v. 11982. Cham: Springer. https://doi.org/10.1007/978-3-030-37337-5_37
VAKRATSAS, D.; AMBLER, Tim. How advertising works: What do we really know? Journal of Marketing, v. 63, n. 1, p. 26-43, 1999. https://doi.org/10.2307/1251999
VAKRATSAS, Demetrios; WANG, Xin. Artificial Intelligence in Advertising Creativity. Journal of Advertising, v. 50, n. 1, p. 39-51, 2020. https://doi.org/10.1080/00913367.2020.1843090
ZHANG, Lu et al. Multimodal Marketing Intent Analysis for Effective Targeted Advertising. IEEE Transactions on Multimedia, v. 24, p. 1830-1843, 2022. https://doi.org/10.1109/TMM.2021.3073267
ZHANG, Renping; LIU, Yuan. Advertising investment, industry competitiveness and corporate market performance. Finance Research Letters, v. 72, 2025. https://doi.org/10.1016/j.frl.2024.106504
WEBER, Max. A ética protestante e o “espírito” do capitalismo. São Paulo: Companhia das Letras, 2007.
WIBOWO, Sampurno; HIDAYAT, R.; SURYANA, Yuyus; SARI, Diana; KALTUM, Umi. Measuring the effect of advertising value and brand awareness on purchase intention through the flow experience method on Facebook’s social media marketing big data. In: INTERNATIONAL CONFERENCE ON CYBER AND IT SERVICE MANAGEMENT (CITSM), 8., Pangkal, Indonesia. Proceedings […]. Pangkal: CITSM, 2020, p. 1-5. https://doi.org/10.1109/CITSM50537.2020.9268812.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Janderle Rabaiolli, Rodrigo Stéfani Correa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons BY-NC-SA License.
