Medición cuántica y decoherencia: ¿qué medimos cuando medimos?

Authors

  • Olímpia Lombardi Universidad de Buenos Aires
  • Leonardo Vanni Universidad de Buenos Aires. Instituto AFE

DOI:

https://doi.org/10.1590/S1678-31662010000200006

Keywords:

Measuring apparatus, Environment, Basis of the Hilbert space, Superposition

Abstract

The problem of the preferred basis consists in accounting for the basis that defines the measured observable in a quantum measurement, given the supposed theoretical ambiguity in the definition of such an observable. The purpose of this paper is to analyze this scarcely explored problem. The final aim consists in arguing that, contrary to a widespread opinion, the theory of decoherence does not supply a solution to this problem, not due to its own inability, but because the problem is actually a pseudo-problem which does not require a solution.

Downloads

Download data is not yet available.

References

Adler, S. Why decoherence has not solved the measurement problem: a response to P. W. Anderson. Studies in History and Philosophy of Modern Physics, 34B, p. 135-42, 2003.

Auletta, G. Foundations and interpretation of quantum mechanics. Singapore: World Scientific, 2000.

Ballentine, L. Quantum mechanics: a modern development. Singapore: World Scientific, 1998.

Blanchard, P.; Giulini, D.; Joos, E.; Kiefer, C. & Stamatescu, I. O. (Ed.). Decoherence: theoretical, experimental, and conceptual problems. Heidelberg/Berlin: Springer, 2000. (Lecture Notes in Physics, 538).

Bub, J. Interpreting the quantum world. Cambridge: Cambridge University Press, 1997.

Castagnino, M. & Lombardi, O. The role of the Hamiltonian in the interpretation of quantum mechanics. Journal of Physics. Conferences Series, 28, #, p. 012014, 2008.

D’Espagnat, B. A note on measurement. Physics Letters a, 282, p. 133-7, 2000.

Elby, A. The “decoherence”. Approach to the measurement problem in quantum mechanics. Proceedings of the 1994 Biennial Meeting of the Philosophy of Science Association, Vol. 1. East Lansing: Philosophy of Science Association, p. 355-65. 1994, v. 1.

Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischer Kinematic und Mechanik. Zeitschrift für Physik, 43, p. 172-98, 1927.

Heiss, D. (Ed.). Fundamentals of quantum information: quantum computation, communication, decoherence and all that. Heidelberg-Berlin: Springer, 2002.

Hiley, B. J. & Peat, F. D. (Ed.). Quantum implications. London: Routledge and Kegan Paul, 1987.

Hughes, R. I. G. The structure and interpretation of quantum mechanics, Cambridge: Harvard University Press, 1989.

Jammer, M. The philosophy of quantum mechanics. New York: John Wiley & Sons, 1974.

Joos, E. Elements of environmental decoherence. In: Blanchard, P.; Giulini, D.; Joos, E.; Kiefer, C. & Stamatescu, I. O. (Ed.). Decoherence: theoretical, experimental, and conceptual problems. Heidelberg/Berlin: Springer, 2000. p. 1-17. (Lecture Notes in Physics, 538).

Leggett, A. J. Reflections on the quantum measurement paradox. In: Hiley, B. J. & Peat, F. D. (Ed.). Quantum implications. London: Routledge and Kegan Paul, 1987. p. 85-104.

Lombardi, O. & Castagnino, M. A modal-hamiltonian interpretation of quantum mechanics. Studies in History and Philosophy of Modern Physics, 39, p. 380-443, 2008.

Mittelstaedt, P. The interpretation of quantum mechanics and the measurement process. Cambridge: Cambridge University Press, 1998.

Paz, J. P. & Zurek, W. H. Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (Ed.). Fundamentals of quantum information: quantum computation, communication, decoherence and all that. Heidelberg/Berlin: Springer, 2002. p. 77-148.

Pessoa Júnior, O. Conceitos de física quântica. São Paulo: Editora Livraria da Física, 2003.

Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76, p. 1267-305, 2004.

Schlosshauer, M. Decoherence and the quantum-to-classical transition. Berlin/Heidelberg: Springer/Verlag, 2007.

Wallace, D. Worlds in Everett interpretation. Studies in History and Philosophy of Modern Physics, 33, p. 637-61, 2002.

Wallace, D. Everett and structure. Studies in History and Philosophy of Modern Physics, 34, p. 87-105, 2003.

Zeh, D. On the interpretation of measurement in quantum theory. Foundations of Physics, 1, p. 69-76, 1970.

Zurek, W. H. Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Physical Review d, 24, p. 1516-25, 1981.

Zurek, W. H. Environment-induced superselection rules. Physical Review d, 26, p. 1862-80, 1982.

Zurek, W. H. Decoherence and the transition from quantum to classical. Physics Today, 44, p. 36-44, 1991.

Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75, p. 715-76, 2003.

Downloads

Published

2010-06-01

Issue

Section

Artigos

How to Cite

Medición cuántica y decoherencia: ¿qué medimos cuando medimos?. (2010). Scientiae Studia, 8(2), 273-291. https://doi.org/10.1590/S1678-31662010000200006