Information and quantum theory

Authors

  • Olival Freire Junior Universidade Federal da Bahia. Instituto de Física
  • Ileana Maria Greca Universidad de Burgos. Facultad de Humanidades y Educación

DOI:

https://doi.org/10.1590/S1678-31662013000100002

Abstract

Research in quantum information suggests a close connection between information and quantum theory. The aim of this article is to analyze nuances involved in this connection. Scientists in this field are divided into two overlapping camps. Some are motivated only by the use of quantum features to improve information processing, in spite of concerns about the foundations of the quantum theory, while others recognize deep conceptual problems of this theory, and attempt to solve them. This article has modest ambitions. It aims only to chart, by way of historical and conceptual analysis, the diverse possibilities available, indicating the strengths and weaknesses of each of them.

Downloads

Download data is not yet available.

References

Aaronson, S. Get real. Nature Physics, 8, p. 443-4, 2012.

Benioff. P. Quantum mechanical hamiltonian models of discrete processes that erase their own histories: application to Turing machines. International Journal of Theoretical Physics, 21, p. 177-201, 1982.

Bennett, C. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Proceedings of IEEE International Conference on Computer Systems and Signal Processing. New York: IEEE, 1984. p. 175-9.

Bennett, C. & Brassard, G. The dawn of a new era in quantum cryptography: the experimental prototype is working. ACM SIGACT News, 20, p. 78-83, 1989.

Bennett, C. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70, 13, p. 1895-9, 1993.

Bennett, C. & Weisner, S. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69, 16, p. 2881-4, 1992.

Bohr, N. Natural philosophy and human cultures. In: The philosophical writings of Niels Bohr. Essays 1932-1957 on atomic physics and human knowledge. Woodbridge: Ox Bow, 1987 [1938]. v. 2, p. 23-31.

Bouwmeester, D. et al. Experimental quantum teleportation. Nature, 390, p. 575-9, 1997.

Bromberg, J. L. Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics. Isis, 97, 2, p. 237-59, 2006.

Brukner, C. & Zeilinger, A. Conceptual inadequacy of the Shannon information in quantum measurements. Physical Review, A, 63, p. 022113, 2001.

Brukner, C. & Zeilinger, A. Quantum physics as a science of information. In: Elitzur, A.; Dolev, S & Kolenda, N. (Ed.). Quo vadis quantum mechanics? New York: Springer, 2005. p. 47-61.

Deutsch, D. Quantum theory, the church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A, 400, p. 97-107, 1985a.

Deutsch, D. Quantum-theory as a universal physical theory. International Journal of Theoretical Physics, 24, 1, p. 1-41, 1985b.

Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London A, 439, p. 553-8, 1992.

DeWitt, B. & Graham, N. (Ed.). The many-worlds interpretation of quantum mechanics. Princeton: Princeton University of Press, 1973.

Dieks, D. Communication by EPR devices. Physics Letters A, 92, 6, p. 271–2, 1982.

Einstein, A. Reply to criticisms. In: Schilpp, P. A. (Ed.). Albert Eisntein – philosopher-scientist. La Salle (Illinois): Open Court, 1982. p. 663-8.

Elitzur, A.; Dolev, S & Kolenda, N. (Ed.). Quo Vadis quantum mechanics? New York: Springer, 2005.

Everett iii, H. The theory of the universal wave function. In: DeWitt, B. & Graham, N. (Ed.). The many-worlds interpretation of quantum mechanics. Princeton: Princeton University of Press, 1973.

Ferrero, M. Special issue: International conference on quantum information. Conceptual foundations, developments and perspectives, 13–18 July 2002, Journal of Modern Optics, 50, 6-7, p. 867-71, 2003a.

Ferrero, M. The information interpretation and the conceptual problems in quantum mechanics. Foundations of Physics, 33, 4, p. 665-76, 2003b.

Ferrero, M.; Salgado, D. & Sánchez-Gómez, J. L. Is the epistemic view of quantum mechanics incomplete? Foundations of Physics, 34, 12, p. 1993-2003, 2004.

Ferrero, M. & Santos, E. Local realistic photon model compatible with Malus’ law for experiments testing Bell’s inequalities. Physics Letters A, 108, 8, p. 373–6, 1985.

Ferrero, M. & van der Merwe, A. Fundamental problems in quantum physics. Dordrecht: Kluwer Academic Publishers, 1995.

Ferrero, M. & van der Merwe, A. New developments on fundamental problems in quantum physics. Dordrecht: Kluwer Academic Publishers, 1997.

Feynman, R. P. Simulating physics with computers. International Journal of Theoretical Physics, 21, p. 467-88, 1982.

Freire Jr., O. David Bohm e a controvérsia dos quanta. Campinas: Centro de Lógica e Epistemologia da Ciência – Unicamp, 1999.

Freire Jr., O. Philosophy enters the optics laboratory: Bell’s theorem and its first experimental tests (1965-1982). Studies in History and Philosophy of Modern Physics, 37, p. 577-616, 2006.

Freire Jr., O. Quantum dissidents: research on the foundations of quantum theory circa 1970. Studies in History and Philosophy of Modern Physics, 40, p. 280–9, 2009.

Fuchs, C. A. Quantum mechanics as quantum information, mostly. Journal of Modern Optics, 50, 6-7, p. 987-1023, 2003.

Fuchs, C. A. & Peres, A. Quantum theory needs no “interpretation”. Physics Today, 53, 3, p. 70-1, 2000a.

Fuchs, C. A. & Peres, A. Quantum theory needs no “interpretation”. Letters. Physics Today, 53, 9, p. 11-90, 2000b.

Gleick, J. The information. A history. A theory. A flood. New York: Pantheon, 2011.

Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79, 2, p. 325-8, 1997.

Herbert, N. FLASH- a superluminal communicator based upon a new kind of quantum measurement. Foundations of Physics, 12, p. 1171-9, 1982.

Jammer, M. The philosophy of quantum mechanics. The interpretations of quantum mechanics in historical perspective. New York: Wiley, 1974.

Kaiser, D. How the hippies saved physics. New York: W. W. Norton & Company, 2011.

Keller, E. F. Models, simulations and “computer experiments”. In: Radder, H. (Ed.). The philosophy of scientific experimentation. Pittsburg: Pittsburgh University Press, 2003. p. 198-215.

Lloyd, S. Programming the universe – a quantum computer scientist takes on the cosmos. New York: Knopf, 2006.

Marshall, T ; Santos, E. & Selleri, F. Local realism has not been refuted by atomic cascade experiments. Physics Letters, 98A, 1-2, p. 5-9, 1983.

Mermin, N. D. From Cbits to Qbits: teaching computer scientists quantum mechanics. American Journal of Physics, 71, p. 23, 2003.

Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. New York: Cambridge University Press, 2010.

Osnaghi, S.; Freitas, F. & Freire Jr., O. The origin of the everettian heresy. Studies in History and Philosophy of Modern Physics, 40, p. 97-123, 2009.

Paraoanu, G. S. Quantum computing: theoretical versus practical possibility. Physics in Perspective, 13, p. 359-72, 2011.

Preskill, Notes of the course “quantum computation”, 2004. Disponível em: <http://www.theory.caltech.edu/_preskill/ph229>. Acesso em: 15 out. 2012.

Pusey, M. F.; Barrett, J, & Rudolph, T. On the reality of the quantum state. Nature Physics, 8, p. 476-9, 2012.

Radder, H. (Ed.). The philosophy of scientific experimentation. Pittsburg: Pittsburgh University Press, 2003.

Redhead, M. Incompleteness, nonlocality, and realism: a prolegomenon to the philosophy of quantum mechanics. Oxford: Oxford University Press, 1987.

Schilpp, P. A. (Ed.). Albert Eisntein – philosopher-scientist. La Salle (Illinois): Open Court, 1982.

Schumacher, B. Quantum coding. Physical Review A, 51, p. 2738-47, 1995.

Shannon, C. E. & Weaver, W. The mathematical theory of communication. Urbana: University of Illinois Press, 1949.

Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (Ed.). Proceedings of the 35th annual symposium on foundations of computer science. Santa Fé: IEEE Computer Society Press, 1994. p. 124-34.

Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Physics Review A, 52, p. R2493-6, 1995.

Shor, P. W. Fault-tolerant quantum computation. In: Proceedings, 37th annual symposium on fundamentals of computer science. Los Alamitos: IEEE Press, 1996. p. 56-65.

Steane, A. M. Multiple particle interference and quantum error correction. Proc. R. Soc. London A, 452, p. 2551-76, 1996.

Timpson, C. G. On a supposed conceptual inadequacy of the Shannon information in quantum mechanics. Studies in History and Philosophy of Modern Physics, 34, p. 441-68, 2003.

Turing. A. M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 2, p. 42-23, 1936.

Weeler, J. A. Information, physics, quantum: the search for links. In: Zurek, W. (Ed.). Complexity, entropy, and the physics of information. Redwood City: Addison-Wesley, p. 309-36.

Wigner, E. P & Yanase. M. M. Information contents of distributions, Proceedings of the National Academy of Sciences of the United States of America, 49, 6, p. 910-8, 1963.

Wootters, W. K. & Zurek, W. H. Complementarity in the double-slit experiment: quantum non separability and a quantitative statement of Bohr’s principle. Physical Review D, 19, 2, p. 473-84, 1979.

Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature, 299, p. 802-3, 1982.

Yeang, C. P. Engineering entanglement, conceptualizing quantum information. Annals of Science, 68, 3, p. 325-50, 2011.

Published

2013-03-01

Issue

Section

Articles

How to Cite