Construcción, necesidad e intuición de esencias en geometría
DOI:
https://doi.org/10.1590/S1678-31662009000400004Keywords:
Synthetic geometry, Construction, Schemata, Invariances, A prioriAbstract
In this paper I consider the ancient problem of the dependence of synthetic geometry of the diagrams and the demand of necessity and universality for its results. I defend that the source of this necessity is a priori, a special kind of intuition that, in analogy to ordinary empirical intuition, restricted to the apprehension of the particular features of the objects, pass trough those to the apprehension of the shared properties of a class of objects. I will try to suggest that the postulation of that kind of intuition is not a mere philosophical device, but that it find evidence in the geometrical practice, especially in the development this discipline suffered in the nineteenth century, in hands of Poncelet and Klein, between others.Downloads
References
Aristóteles. Metafísica. Madrid: Alianza Editorial, 2008a.
Aristóteles. Analíticos segundos. Madrid: Gredos, 2008b.
Cedrés, A. J. P. A. Geometría, esquemas, e idealización: una módica defensa de la filosofía de la geometría de Kant. Revista de Filosofía, 64, p. 65-77, 2008.
Euclides. Elementos de geometría. Madrid: Gredos, 2000.
Ewald, W. (Ed.). From Kant to Hilbert: a source book in the foundations of mathematics. Oxford: Clarendon Press, 1996.
Heath, T. L. Mathematics in Aristotle. Oxford: Clarendon Press, 1949.
Husserl, E. Ideas relativas a una fenomenología pura y una filosofía fenomenológica. México: FCE, 1949.
Husserl, E. Experience and judgment. Evanston: Northwestern University Press, 1973.
Husserl, E. Phenomenological psychology. Haag: Nijhoff, 1977.
Kant, I. Crítica de la razón pura. Madrid: Alfaguara, 1988.
Klein, F. On the mathematical character of space-intuition and the relation of pure mathematics to the applied sciences. In: Ewald, W. (Ed.). From Kant to Hilbert: a source book in the foundations of mathematics. Oxford: Clarendon Press, 1996 [1911]. p. 958-65.
Leibniz, G. W. Philosophical papers and letters. Dordrecht: Reidel, 1970.
Majer, U. Geometry, intuition and experience: from Kant to Husserl. Erkenntnis, 42, p. 261-85, 1995.
Newman, J. R. (Ed.). La forma del pensamiento matemático. Grijalbo: Barcelona, 1974 [1902].
Newton, I. Mathematical principles of natural philosophy. Berkeley: University of California Press, 1999 [1687].
Peirce, C. S. La esencia de las matemáticas. Traducción M. Sacristán. In: Newman, J. R. (Ed.). La forma del pensamiento matemático. Grijalbo: Barcelona, 1974 [1902]. p. 30-46.
Poncelet, J. V. Traité de proprietés projectives des figures. Paris: Bachelier, 1822.
Platón. República. Madrid: Grédos, 1986.
Proclo. A commentary on the first book of Euclid’s Elements. Princeton: Princeton University Press, 1970.
Torretti, R. Philosophy of geometry from Riemann to Poincaré. Dordrecht: Reidel, 1978.
Downloads
Published
Issue
Section
License
Copyright (c) 2009 Scientiae Studia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A revista detém os direitos autorais de todos os textos nela publicados. Os autores estão autorizados a republicar seus textos mediante menção da publicação anterior na revista. A revista adota a Licença Creative Commons Attribution-NonCommercial-ShareAlike 4.