Sobre uma fundamentação não reflexiva da mecânica quântica

Authors

  • Newton Carneiro Affonso da Costa Universidade Federal de Santa Catarina
  • Décio Krause Universidade Federal de Santa Catarina
  • Jonas Rafael Becker Arenhart Universidade Federal da Fronteira Sul
  • Jaison Schinaider Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.1590/S1678-31662012000100004

Keywords:

Identity, Individuality, Non-individuality, Quantum objects, Quasi-set theory, Non-reflexive logic, Non-reflexive quantum mechanics

Abstract

This is an expository article in which we discuss a cluster of topics related to the foundations of quantum physics, mainly regarding the concepts of identity and of individuality of the basic entities dealt with by the theory (or group of theories). We propose that, if one wants to ground the formal counterpart of a possible view of quantum entities as objects devoid of individuality, there are basically two possible alternatives: (a) to maintain classical logic and standard mathematics, say by using a set theory such as the Zermelo-Fraenkel system - in this case we can either assume certain symmetry conditions that enable us to speak about the non-individuality of the quantum entities, or restrict ourselves to certain classes in which only a weaker relation of indistinguishability is defined; (b) to elaborate a new mathematical theory, in which the non-individuality of certain objects is assumed ab initio. After discussing the first alternative by presenting "inner models" of ZFU and of ZFC set theories, in which identity is restricted in some way, we comment on its advantages and disadvantages. Then, motivated by the second hypothesis, we sketch the main aspects of what could be taken as a quantum mechanics grounded on a possible set theory, quasi-set theory, that departs from the standard systems. Since the underlying logic of quasi-set theory is a non-reflexive logic, we call the corresponding mechanics non-reflexive quantum mechanics.

Downloads

Download data is not yet available.

References

Adams, R. Primitive thisness and primitive identity. Journal of Philosophy, 76, p. 5-26, 1979.

Béziau, J. Y. What is the principle of indentity? (Identity, congruence and logic). In: Sautter, F. T. & Feitosa H. A. (Org.). Lógica: teoria, aplicações e reflexões. Campinas: UNICAMP, Centro de Lógica, Epistemologia e História da Ciência, 2004. p. 163-72.

Brignole, D. & da Costa N. C. A. On supernormal Ehresmann-Dedecker universes. Mathematische Zeitschrift, 122, p. 342-50, 1971.

Cao, T. Y. (Ed.). Conceptual foundations of quantum field theory. Cambridge: Cambridge University Press, 1999.

Castellani, E. (Org.). Interpreting bodies: classical and quantum objects in modern physics. Princeton: Princeton University Press, 1998.

Church, A. Introduction to mathematical logic. Princeton: Princeton University Press, 1956. v. 1.

Corsi, G. et al. (Org.). Bridging the gap: philosophy, mathematics, physics. Dordrecht: Kluwer Academy Press, 1993.

da Costa, N. C. A. Ensaio sobre os fundamentos da Lógica. São Paulo: Hucitec/EdUSP, 1980.

da Costa, N. C. A. & Bueno, O. Non reflexive logics. Revista Brasileira de Filosofia, 232, p. 181-96, 2009.

da Costa, N. C. A. & Krause, D. Schrödinger logics. Studia Lógica, 53, 4, p. 533-50, 1994.

da Costa, N. C. A. & Krause, D. An intensional Schrödinger logic. Notre Dame Journal. of Formal Logic, 38, 2, p. 179-94, 1997.

da Costa, N. C. A. & Rodrigues, A. M. N. Definability and invariance. Studia Logica, 86, p. 1-30, 2007.

Domenech, G. et al. D. Quasi-spaces and the foundations of quantum mechanics. Foundations of Physics, 38. p. 969-94, 2008.

Goldstein, S. Bohmian mechanics, The Stanford Encyclopedia of Philosophy (Spring 2009 Edition), 2006. Disponível em: <http://plato.stanford.edu/archives/spr2009/ entries/qm-bohm>. Acesso em: 17/jan./2012.

Einstein, A. Apresentação. In: Jammer, M. Conceito de espaço: a história das teorias do espaço na física. São Paulo, 2010 [1953], p. 15-20.

French, S. & Krause, D. Identity in physics: a historical, philosophical, and formal analysis. Oxford: Oxford University. Press, 2006.

French, S. & Krause, D. Remarks on the theory of quasi-sets. Studia Lógica, 95, 1-2, p.101-24, 2010.

Jammer, M. Conceito de espaço: a história das teorias do espaço na física. São Paulo: Livraria da Física Editora, 2010 [1953].

Ketland, J. Structuralism and the identity of indiscernibles. Analysis, 66, 4 p. 303-15, 2006.

Krause, D. & Bueno, O. Scientific theories, models, and the semantic approach. Principia, 11, 2, p. 187-201, 2007.

Lévy-Leblond, J. M. & Balibar, F. Quantics: rudiments of quantum physics. Amsterdam: North-Holland/Elsevier, 1990.

Merzbacher, E. Quantum mechanics. New York: John Wiley & Sons, 1974.

Moreland, J. P. Theories of individuation: a reconsideration of bare particulars. Pacific Philosophical Quarterly, 79, p. 51-63, 1998.

Redhead, M. & Teller, P. Particles, particle labels, and quanta: the toll of unacknowledged metaphysics. Found. Physics, 21, p. 43–62, 1991.

Redhead, M. & Teller, P. Particle labels and the theory of indistinguishable particles in quantum mechanics. British Journal of Philosophy of Science, 43, p. 14-22, 201–18, 1992.

Rovelli, C. “Localization” in quantum field theory: how much of QFT is compatible with what we know about space-time? In: Cao, T. Y. (Ed.). Conceptual foundations of quantum field theory. Cambridge: Cambridge University Press, 1999. p. 207-32.

Saint Andrews University. MacTutor’s biography of Robert Recorde. 2002. Disponível em: <http://www.history.mcs.st-and.ac.uk/Biographies/Recorde.html>. Acessado em: 12/dez./2012.

Sautter, F. T. & Feitosa H. A. (Org.). Lógica: teoria, aplicações e reflexões. Campinas: UNICAMP, Centro de Lógica, Epistemologia e História da Ciência, 2004.

Suppes, P. Axiomatic set theory. New York: Dover., 1960.

Teller, P. An interpretive introduction to quantum field theory. Princeton: Princeton University Press, 1995.

Uffink, J. E. & Hilgevoord, J. Interference and indistinguishability in quantum mechanics. Physica B, p. 309-13, 1988.

Van Fraassen, B. The problem of indistinguishable particles. In: Castellani, E. (Org.). Interpreting bodies: classical and quantum objects in modern physics. Princeton: Princeton University Press, 1998. 73-92

Published

2012-01-01

Issue

Section

Artigos

How to Cite

Sobre uma fundamentação não reflexiva da mecânica quântica . (2012). Scientiae Studia, 10(1), 71-104. https://doi.org/10.1590/S1678-31662012000100004