Modulation of handgrip strength by contralateral hip flexor motor overflow: randomized controlled trial

Authors

DOI:

https://doi.org/10.11606/issn.2317-0190.v32i2a236056

Keywords:

Hand Strength, Isometric Contraction, Hip, Rehabilitation

Abstract

Objective: To assess whether the motor overflow generated by the contralateral isometric contraction of the hip flexors attenuates the drop in handgrip strength (HGS) in a repetitive maximal strength protocol in healthy adults. Method: Ninety participants were randomized into control and overflow groups. Handgrip strength was measured in the baseline and test phases using a hand dynamometer. In the test phase, the overflow group performed maximal isometric contractions of the hip flexors simultaneously with the HGS tasks (6 seconds, 9 seconds rest). Multivariate analysis of variance (MANOVA) assessed differences by group, gender, hand and phase. Results: The control group showed a significant reduction in HGS between phases (p<0.05), while the overflow group maintained HGS in the test phase (p>0.05). Effect sizes (Cohen's d=0.71-0.87) indicated medium to high clinical relevance, suggesting neural facilitation by contralateral activation. Conclusion: Motor overflow of the hip flexors supports HGS in repetitive tasks, with potential application in neuromuscular rehabilitation. Strategies based on motor overflow can optimize strength and reduce fatigue in therapeutic protocols.

Downloads

Download data is not yet available.

References

Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev. 2022;132:260-288. Doi: https://doi.org/10.1016/j.neubiorev.2021.11.025

Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol (1985). 2008;104(2):542-50. Doi: https://doi.org/10.1152/japplphysiol.01053.2007

Sharman MJ, Cresswell AG, Riek S. Proprioceptive neuro-muscular facilitation stretching: mechanisms and clinical implications. Sports Med. 2006;36(11):929-39. Doi: https://doi.org/10.2165/00007256-200636110-00002

Surburg PR, Schrader JW. Proprioceptive neuromuscular facilitation techniques in sports medicine: a reassessment. J Athl Train. 1997;32(1):34-9.

Damiano DL, Arnold AS, Steele KM, Delp SL. Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Phys Ther. 2010;90(2):269-79. Doi: https://doi.org/10.2522/ptj.20090062

Zijdewind I, Kernell D. Bilateral interactions during contrac-tions of intrinsic hand muscles. J Neurophysiol. 2001;85(5):1907-13. Doi: https://doi.org/10.1152/jn.2001.85.5.1907

Lee JH, Kim EJ. The Effect of Diagonal Exercise Training for Neurorehabilitation on Functional Activity in Stroke Patients: A Pilot Study. Brain Sci. 2023;13(5):799. Doi: https://doi.org/10.3390/brainsci13050799

Knott M, Voss DE. Proprioceptive neuromuscular facilitation: patterns and techniques. 2nd ed. New York: Hoeber Medical Division, Harper & Row; 1968.

Adler SS, Beckers D, Buck M. PNF in practice: an illustrated guide. 3rd ed. Berlin: Springer; 2008.

Latash ML, Turvey MT. Dexterity and its development. Mah-wah, NJ: Lawrence Erlbaum Associates; 1996.

Li S, Chen YT, Magat E, Li S, Zhou P. Motor overflow in spastic hemiplegia after stroke. APRM. 2018;61:e204–5. Doi: https://doi.org/10.1016/j.rehab.2018.05.472

Nakada CS, Meningroni PC, Ferreira ACS, Hata L, Fuzaro AC, Júnior WM, et al. Ipsilateral proprioceptive neuromuscular facilitation patterns improve overflow and reduce foot drop in patients with demyelinating polyneuropathy. J Exerc Rehabil. 2018;14(3):503-8. Doi: https://doi.org/10.12965/jer.1836178.089

Cleland BT, Madhavan S. Motor overflow in the lower limb after stroke: Insights into mechanisms. Eur J Neurosci. 2022;56(4):4455-4468. Doi: https://doi.org/10.1111/ejn.15753

Perez MA, Cohen LG. Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neurosci. 2008;28(22):5631-40. Doi: https://doi.org/10.1523/JNEUROSCI.0093-08.2008

Cronin J, Lawton T, Harris N, Kilding A, McMaster DT. A Brief Review of Handgrip Strength and Sport Performance. J Strength Cond Res. 2017;31(11):3187-3217. Doi: https://doi.org/10.1519/JSC.0000000000002149

Lemon RN. Descending pathways in motor control. Annu Rev Neurosci. 2008;31:195-218. Doi: https://doi.org/10.1146/annurev.neuro.31.060407.125547

Espírito-Santo H, Pires CF, Garcia IQ, Daniel F, Silva AG, Fazio RL. Preliminary validation of the Portuguese Edinburgh Handedness Inventory in an adult sample. Appl Neuropsychol Adult. 2017;24(3):275-287. Doi: https://doi.org/10.1080/23279095.2017.1290636

Przybyla A, Good DC, Sainburg RL. Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers. Exp Brain Res. 2012;216(3):419-31. Doi: https://doi.org/10.1007/s00221-011-2946-y

Nalçaci E, Kalaycioğlu C, Ciçek M, Genç Y. The relationship between handedness and fine motor performance. Cortex. 2001;37(4):493-500. Doi: https://doi.org/10.1016/s0010-9452(08)70589-6

Fess EE. Grip strength. In: Casanova JS, editor. Clinical assessment recommendations. 2nd ed. Chicago: American Society of Hand Therapists; 1992. p. 41-45.

Kuypers HGJM. Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology: the nervous system. Bethesda: American Physiological Society; 1981. p. 597-666.

Benwell NM, Mastaglia FL, Thickbroom GW. Reduced functional activation after fatiguing exercise is not confined to primary motor areas. Exp Brain Res. 2006;175(4):575-83. Doi: https://doi.org/10.1007/s00221-006-0573-9

Bohannon RW. Hand-grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther. 2008;31(1):3-10. Doi: https://doi.org/10.1519/00139143-200831010-00002

Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, et al. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physi-ol. 2004;560(Pt 3):929-40. Doi: https://doi.org/10.1113/jphysiol.2004.069088

Hortobágyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol. 2003;90(4):2451-9. Doi: https://doi.org/10.1152/jn.01001.2002

Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and re-search application. An updated report from an I.F.C.N. Com-mittee. Clin Neurophysiol. 2015;126(6):1071-1107. Doi: https://doi.org/10.1016/j.clinph.2015.02.001

Gardner EB. The neurophysiological basis of motor learning. A review. Phys Ther. 1967;47(12):1115-22. Doi: https://doi.org/10.1093/ptj/47.12.1115

Benitez B, Kwak M, Succi PJ, Mitchinson C, Bergstrom HC. No sex differences in time-to-task failure and neuromuscular patterns of response during submaximal, bilateral, isometric leg extensions. Eur J Appl Physiol. 2024;124(10):2993-3004. Doi: https://doi.org/10.1007/s00421-024-05508-0

Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf). 2014;210(4):768-89. Doi: https://doi.org/10.1111/apha.12234

Lee M, Carroll TJ. Cross education: possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med. 2007;37(1):1-14. Doi: https://doi.org/10.2165/00007256-200737010-00001

Downloads

Published

2025-06-30

Issue

Section

Original Article

Funding data

How to Cite

1.
Rosa GH de M, Moretto GH, Zhang K, Chagas T de J, Araujo JE de. Modulation of handgrip strength by contralateral hip flexor motor overflow: randomized controlled trial. Acta Fisiátr. [Internet]. 2025 Jun. 30 [cited 2025 Dec. 28];32(2):88-94. Available from: https://revistas.usp.br/actafisiatrica/article/view/236056