The influence of dehydroepiandrosterone on effector functions of neutrophils

Authors

  • Verônica Soares Brauer Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Fabiana Albani Zambuzi Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Milena Sobral Espíndola 1 Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Marinaldo Pacífico Cavalcanti Neto 1 Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Morgana Kelly Borges Prado Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil https://orcid.org/0000-0002-8212-5821
  • Priscilla Mariane Cardoso Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Luana Silva Soares Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Leonardo Judson Galvao-Lima Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Andréia Machado Leopoldino Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Cristina Ribeiro de Barros Cardoso Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
  • Fabiani Gai Frantz Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, FCFRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil https://orcid.org/0000-0001-6960-2438

DOI:

https://doi.org/10.1590/s2175-97902020000419139

Keywords:

Dehydroepiandrosterone; Neuroimmunoendocrinology; S. typhimurium; Innate immunity; Phagocytosis

Abstract

Dehydroepiandrosterone (DHEA) is a steroid hormone secreted by the adrenal glands, gonads and brain. It is a precursor to sex hormones and also is known to have immune modulatory activity. However, little is known about the relationship between DHEA and neutrophils and thus our study evaluates the influence of DHEA in the effector functions of neutrophils. Human neutrophils were treated in vitro with DHEA and further infected with Salmonella enterica serovar Typhimurium. The treatment of neutrophils with 0.01 μM of DHEA increased the phagocytosis of Salmonella independent of TLR4 as the treatment did not modulate the TLR4 expression. Additionally, DHEA caused a decrease in ROS (reactive oxygen species) production and did not influence the formation of the neutrophil extracellular trap (NET). Steroid treated neutrophils, infected or stimulated with LPS (lipopolysaccharide), showed reduced production of IL-8, compared to untreated cells. Also, the protein levels of p-NFκB were decreased in neutrophils treated with DHEA, and this reduction could explain the reduced levels of IL-8. These results led us to conclude that the steroid hormone DHEA has important modulatory functions in neutrophils.

Downloads

Download data is not yet available.

References

Allolio B, Arlt W. DHEA treatment: myth or reality? Trends Endocrinol Metab. 2002;13(7):288-94.

Alves VB, Basso PJ, Nardini V, Silva A, Chica JE, Cardoso CR. Dehydroepiandrosterone (DHEA) restrains intestinal inflammation by rendering leukocytes hyporesponsive and balancing colitogenic inflammatory responses. Immunobiology. 2016;221(9):934-43.

Arlt W, Hewison M. Hormones and immune function: implications of aging. Aging Cell. 2004;3(4):209-16.

Barkhausen T, Westphal BM, Pütz C, Krettek C, van Griensven M. Dehydroepiandrosterone administration modulates endothelial and neutrophil adhesion molecule expression in vitro. Crit Care. 2006;10(4):R109.

Ben-Nathan D, Padgett DA, Loria RM. Androstenediol and dehydroepiandrosterone protect mice against lethal bacterial infections and lipopolysaccharide toxicity. J Med Microbiol. 1999;48(5):425-31.

Bongiovanni B, Mata-Espinosa D, D’Attilio L, LeonContreras JC, Marquez-Velasco R, Bottasso O, et al. Effect of cortisol and/or DHEA on THP1-derived macrophages infected with Mycobacterium tuberculosis. Tuberculosis (Edinb). 2015;95(5):562-9.

Buckingham JC, Loxley HD, Christian HC, Philip JG. Activation of the HPA axis by immune insults: roles and interactions of cytokines, eicosanoids, glucocorticoids. Pharmacol Biochem Behav. 1996;54(1):285-98.

Butcher SK, Killampalli V, Lascelles D, Wang K, Alpar EK, Lord JM. Raised cortisol:DHEAS ratios in the elderly after injury: potential impact upon neutrophil function and immunity. Aging Cell. 2005;4(6):319-24.

Chang DM, Chu SJ, Chen HC, Kuo SY, Lai JH. Dehydroepiandrosterone suppresses interleukin 10 synthesis in women with systemic lupus erythematosus. Ann Rheum Dis. 2004;63(12):1623-6.

Crosbie D, Black C, McIntyre L, Royle PL, Thomas S. Dehydroepiandrosterone for systemic lupus erythematosus. Cochrane Database Syst Rev. 2007(4):CD005114.

Du C, Guan Q, Khalil MW, Sriram S. Stimulation of Th2 response by high doses of dehydroepiandrosterone in KLH-primed splenocytes. Exp Biol Med (Maywood). 2001;226(11):1051-60.

Ebeling P, Koivisto VA. Physiological importance of dehydroepiandrosterone. Lancet. 1994;343(8911):1479-81.

Eckmann L, Kagnoff MF. Cytokines in host defense against Salmonella. Microbes and infection/Institut Pasteur. 2001;3(14-15):1191-200.

Gordon G, Mackow MC, Levy HR. On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase. Arch Biochem Biophys. 1995;318(1):25-9.

Gutiérrez G, Mendoza C, Zapata E, Montiel A, Reyes E, Montaño LF, et al. Dehydroepiandrosterone inhibits the TNFalpha-induced inflammatory response in human umbilical vein endothelial cells. Atherosclerosis. 2007;190(1):90-9.

Hartkamp A, Geenen R, Godaert GL, Bijl M, Bijlsma JW, Derksen RH. Effects of dehydroepiandrosterone on fatigue and well-being in women with quiescent systemic lupus erythematosus: a randomised controlled trial. Ann Rheum Dis. 2010;69(6):1144-7.

Hazeldine J, Arlt W, Lord JM. Dehydroepiandrosterone as a regulator of immune cell function. J Steroid Biochem Mol Biol. 2010;120(2-3):127-36.

Heffner KL. Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol Allergy Clin North Am. 2011;31(1):95-108.

Hinson JP, Raven PW. DHEA deficiency syndrome: a new term for old age? J Endocrinol. 1999;163(1):1-5.

Izumo K, Horiuchi M, Komatsu M, Aoyama K, Bandow K, Matsuguchi T, et al. Dehydroepiandrosterone increased oxidative stress in a human cell line during differentiation. Free Radic Res. 2009;43(10):922-31.

Kim SK, Shin MS, Jung BK, Shim JY, Won HS, Lee PR, et al. Effect of dehydroepiandrosterone on lipopolysaccharideinduced interleukin-6 production in DH82 cultured canine macrophage cells. J Reprod Immunol. 2006;70(1-2):71-81.

Koziol-White CJ, Goncharova EA, Cao G, Johnson M, Krymskaya VP, Panettieri RA. DHEA-S inhibits human neutrophil and human airway smooth muscle migration. Biochim Biophys Acta. 2012;1822(10):1638-42.

Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF. DHEA and DHEA-S: a review. J Clin Pharmacol. 1999;39(4):327-48.

Lapponi MJ, Carestia A, Landoni VI, Rivadeneyra L, Etulain J, Negrotto S, et al. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs. J Pharmacol Exp Ther. 2013;345(3):430-7.

Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.

LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. ISSN 1046-2023 (Print) 1046-2023.

Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol. 2009;30(1):65-91.

Matsuda A, Furukawa K, Suzuki H, Matsutani T, Tajiri T, Chaudry IH. Dehydroepiandrosterone modulates toll-like receptor expression on splenic macrophages of mice after severe polymicrobial sepsis. Shock. 2005;24(4):364-9.

Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12(8):695-708.

Perner A, Nielsen SE, Rask-Madsen J. High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med. 2003;29(4):642-5.

Powell JM, Sonnenfeld G. The effects of dehydroepiandrosterone (DHEA) on in vitro spleen cell proliferation and cytokine production. J Interferon Cytokine Res. 2006;26(1):34-9.

Quintanar JL, Guzmán-Soto I. Hypothalamic neurohormones and immune responses. Front Integr Neurosci. 2013;7:56.

Racchi M, Balduzzi C, Corsini E. Dehydroepiandrosterone (DHEA) and the aging brain: flipping a coin in the “fountain of youth”. CNS Drug Rev. 2003;9(1):21-40.

Radford DJ, Wang K, McNelis JC, Taylor AE, Hechenberger G, Hofmann J, et al. Dehydroepiandrosterone sulfate directly activates protein kinase C-beta to increase human neutrophil superoxide generation. Mol Endocrinol. 2010;24(4):813-21.

Stanton RC. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life. 2012;64(5):362-9.

Sternberg EM. Neuroendocrine regulation of autoimmune/ inflammatory disease. J Endocrinol. 2001;169(3):429-35.

Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Schölmerich J, et al. Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab. 1998;83(6):2012-7.

STROBER, W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol, v. Appendix 3, p. Appendix 3B, May 2001. ISSN 1934-3671.

Suzuki T, Suzuki N, Daynes RA, Engleman EG. Dehydroepiandrosterone enhances IL2 production and cytotoxic effector function of human T cells. Clinical immunology and immunopathology. 1991;61(2 Pt 1):202-11.

Tchernof A, Labrie F. Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies. Eur J Endocrinol. 2004;151(1):1-14.

van Bruggen R, Zweers D, van Diepen A, van Dissel JT, Roos D, Verhoeven AJ, et al. Complement receptor 3 and Toll-like receptor 4 act sequentially in uptake and intracellular killing of unopsonized Salmonella enterica serovar Typhimurium by human neutrophils. Infect Immun. 2007;75(6):2655-60.

van Vollenhoven RF, Engleman EG, McGuire JL. An open study of dehydroepiandrosterone in systemic lupus erythematosus. Arthritis Rheum. 1994;37(9):1305-10.

WEIGENT, D. A.; CARR, D. J.; BLALOCK, J. E. Bidirectional communication between the neuroendocrine and immune systems. Common hormones and hormone receptors. Ann N Y Acad Sci, v. 579, p. 17-27, 1990. ISSN 0077-8923 (Print) 0077-8923.

Downloads

Published

2022-11-09

Issue

Section

Original Article

How to Cite

The influence of dehydroepiandrosterone on effector functions of neutrophils. (2022). Brazilian Journal of Pharmaceutical Sciences, 57. https://doi.org/10.1590/s2175-97902020000419139