Experimental Frog Virus 3 infection using Brazilian strain: amphibians susceptibility

Authors

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2020.169134

Keywords:

Lithobates catesbeianus, Ranaviruses, Ranavirus, Iridovirus, Emergent disease, Amphibians

Abstract

An alarming number of global warnings concerning amphibian mortality outbreaks have been released in recent years. Emerging diseases stand out as the main potential causes. Ranavirus is a worldwide-spread highly infectious disease capable of affecting even other ectothermic animals such as fish and reptiles. One major issue regarding this pathology is the lack of clinical signs before it leads up to death. Aiming at having a better understanding of anurans susceptibility, this study analyzed bullfrog (Lithobates catesbeianus) survival rate, when challenged with three doses of a Brazilian strain of Frog Virus 3 (FV3). The qPCR analysis indicated a low infectivity rate in these animals both as larvae and as adults. To elucidate the results, the following hypothesis was performed: 1) The amount of inoculum used on the frogs was insufficient to trigger an infection; 2) For the FV3 to produce clinical signs in this species, there is the need for a cofactor; 3) The animals did undergo FV3 infection but recovered in the course of the experiment, and 4) The inoculum utilized might have been low-virulence. Finally, the presence of actual clinical signs of ranavirus is discussed, with the more likely hypothesis.

Downloads

Download data is not yet available.

References

Alencar ALF. Isolamento e caracterização de estirpe de Frog virus 3-símile detectada em rãs-touro gigante (Lithobates catesbeianus) no Estado de São Paulo. Brazil [dissertation]. São Paulo: Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo; 2016. https://doi.org/10.11606/D.74.2016.tde-15082016-141111.

Allender MC, Bunick D, Mitchell MA. Development and validation of TaqMan quantitative PCR for detection of frog virus 3-like virus in eastern box turtles (Terrapene carolina carolina). J Virol Methods. 2013;188(1-2):121-5. https://doi.org/10.1016/j.jviromet.2012.12.012. PMid:23274753.

Altherr S, Goyenechea A, Schubert DJ. Canapés to extinction. In: The International Trade in Frog’s Legs and its Ecological Impact, editor. A report by Pro Wildlife, Defenders of Wildlife and Animal Welfare Institute. Munich: Pro Wildlife; 2011.

Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341(6145):514-9. https://doi.org/10.1126/science.1239401. PMid:23908230.

Ariel E, Jensen BB. Challenge studies of European stocks of redfin perch, Perca fluviatilis L., and rainbow trout, Oncorhynchus mykiss (Walbaum), with epizootic haematopoietic necrosis virus. J Fish Dis. 2009;32(12):1017-25. https://doi.org/10.1111/j.1365-2761.2009.01088.x. PMid:19702625.

Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ. Evolutionary dynamics of viral attenuation evolutionary dynamics of viral attenuation. Science. 2002;76(20):10524-9. PMid:12239331.

Becker CG, Greenspan SE, Tracy KE, Dash JA, Lambertini C, Jenkinson TS, Leite DS, Toledo LF, Longcore JE, James TY, Zamudio KR. Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fungal Ecol. 2017;26:45-50. https://doi.org/10.1016/j.funeco.2016.11.007.

Berger L, Speare R, Hyatt AD. Chytrid fungi and amphibian declines: overview, implications and future directions. In: Campbell A, editor. Declines and disappearances of Australian frogs. Canberra: Environment Australia; 1999. p. 23-33.

Brand MD, Hill RD, Brenes R, Chaney JC, Wilkes RP, Grayfer L, Miller DL, Gray MJ. Water temperature affects susceptibility to Ranavirus. EcoHealth. 2016;13(2):350-9. https://doi.org/10.1007/s10393-016-1120-1. PMid:27283058.

Brunner JL, Richards K, Collins JP. Dose and host characteristics influence virulence of ranavirus infections. Oecologia. 2005;144(3):399-406. https://doi.org/10.1007/s00442-005-0093-5. PMid:15891818.

Candido M, Tavares L, Alencar A, Ferreira CM, Queiroz S, Fernandes A, Sousa RLM. Genome analysis of Ranavirus frog virus 3 isolated from American Bullfrog (Lithobates catesbeianus) in South America. Sci Rep. 2019;9(1):17135. https://doi.org/10.1038/s41598-019-53626-z. PMid:31748669.

Carvalho T, Becker C, Toledo LF. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc Biol Sci. 2017;284(1848):20162254. https://doi.org/10.1098/rspb.2016.2254. PMid:28179514.

Chen G, Robert J. Antiviral immunity in amphibians. Viruses. 2011;3(11):2065-86. https://doi.org/10.3390/v3112065. PMid:22163335.

Chinchar VG, Bryan L, Silphadaung U, Noga E, Wade D, Rollins-Smith L. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology. 2004;323(2):268-75. https://doi.org/10.1016/j.virol.2004.02.029. PMid:15193922.

Chinchar VG, Waltzek TB, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: their place in the virosphere. Virology. 2017;511:259-71. https://doi.org/10.1016/j.virol.2017.06.007. PMid:28648249.

Chinchar VG, Yu KH, Jancovich JK. The molecular biology of Frog virus 3 and other iridoviruses infecting cold-blooded vertebrates. Viruses. 2011;3(10):1959-85. https://doi.org/10.3390/v3101959. PMid:22069524.

Claytor SC, Subramaniam K, Landrau-Giovannetti N, Chinchar VG, Gray MJ, Miller DL, Mavian C, Salemi M, Wisely S, Waltzek TB. Ranavirus phylogenomics: signatures of recombination and inversions among bullfrog ranaculture isolates. Virology. 2017;511:330-43. https://doi.org/10.1016/j.virol.2017.07.028. PMid:28803676.

Cunningham AA, Langton TE, Bennett PM, Lewin JF, Drury SE, Gough RE, MacGregor SK. Pathological and microbiological findings from incidents of unusual mortality of the common frog (Rana temporaria). Philos Trans R Soc Lond B Biol Sci. 1996;351(1347):1539-57. https://doi.org/10.1098/rstb.1996.0140. PMid:8962441.

Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science. 2000;287(5452):443-9. https://doi.org/10.1126/science.287.5452.443. PMid:10642539.

Day T, Proulx S. A general theory for the evolutionary dynamics of virulence. Am Nat. 2004;163(4):E40-63. https://doi.org/10.1086/382548. PMid:15122509.

Densmore CL, Green DE. Diseases of amphibians. ILAR J. 2007;48(3):235-54. https://doi.org/10.1093/ilar.48.3.235. PMid:17592186.

Dias DC, Stéfani MV, Ferreira CM, França FM, Ranzani-Paiva MJT, Santos AA. Haematologic and immunologic parameters of bullfrogs, Lithobates catesbeianus, fed probiotics. Aquacult Res. 2010;41:1064-71. https://doi.org/10.1111/j.1365-2109.2009.02390.x.

Du Pasquier L. The immune system of invertebrates and vertebrates. Comp Biochem Physiol B Biochem Mol Biol. 2001;129(1):1-15. https://doi.org/10.1016/S1096-4959(01)00306-2. PMid:11337247.

Duffus ALJ, Waltzek TB, Stöhr AC, Allender MC, Gotesman M, Whittington RJ, Hick P, Hines MK. Marschang RE Distribution and host range of Ranaviruses. In: Gray MJ, Chinchar VG, editors. Ranaviruses. Cham: Springer International Publishing; 2015. p. 9-57.

Earl JE, Chaney JC, Sutton WB, Lillard CE, Kouba AJ, Langhorne C, Krebs J, Wilkes RP, Hill RD, Miller DL, Gray MJ. Ranavirus could facilitate local extinction of rare amphibian species. Oecologia. 2016;182(2):611-23. https://doi.org/10.1007/s00442-016-3682-6. PMid:27344151.

Earl JE, Gray MJ. Introduction of Ranavirus to isolated wood frog populations could cause local extinction. EcoHealth. 2014;11(4):581-92. https://doi.org/10.1007/s10393-014-0950-y. PMid:24962849.

Echaubard P, Little K, Pauli B, Lesbarréres D. Context-dependent effects of ranaviral infection on northern leopard frog life history traits. PLoS One. 2010;5(10):e13723. https://doi.org/10.1371/journal.pone.0013723. PMid:21060894.

Forzán MJ, Jones KM, Ariel E, Whittington RJ, Wood J, Markham RJF, Daoust PY. Pathogenesis of Frog virus 3 (Ranavirus, Iridoviridae) Infection in Wood Frogs (Rana sylvatica). Vet Pathol. 2017;54(3):531-48. https://doi.org/10.1177/0300985816684929. PMid:28060677.

Forzán MJ, Jones KM, Vanderstichel RV, Wood J, Kibenge FSB, Kuiken T, Wirth W, Ariel E, Daoust PY. Clinical signs, pathology and dose-dependent survival of adult wood frogs, Rana sylvatica, inoculated orally with Frog virus 3 (Ranavirus sp., iridoviridae). J Gen Virol. 2015;96(5):1138-49. https://doi.org/10.1099/vir.0.000043. PMid:25593158.

Forzán MJ, Wood J. Low detection of ranavirus DNA in wild post metamorphic green frogs, Rana (Lithobates) clamitans, despite previous or concurrent tadpole mortality. J Wildl Dis. 2013;49(4):879-86. https://doi.org/10.7589/2013-03-051. PMid:24502715.

Freitas JJG, Viau P, Oliviera CA, Teixeira PC, Tachibana L, Dias DC, Hipolito M, Bordon ICC, Alfaia SR, Ferreira CM. Effect of dietary supplements in American bullfrogs reared in low and high stocking densities. Aquacult Rep. 2017;8:45-8. https://doi.org/10.1016/j.aqrep.2017.09.003.

Galli L, Pereira A, Márquez A, Mazzoni R. Ranavirus detection by PCR in cultured tadpoles (Rana catesbeiana Shaw, 1802) from South America. Aquaculture. 2006;257(1-4):78-82. https://doi.org/10.1016/j.aquaculture.2005.06.019.

Gervasi SS, Foufopoulos J. Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct Ecol. 2008;22:100-8. https://doi.org/10.1111/j.1365-2435.2007.01340.x.

Gosner KL. A simplified table for standing anuran embryos and larvae with notes on identification. Herpetologica. 1960;16(3):183-90.

Grayfer L, Andino FDJ, Chen G, Chinchar GV, Robert J. Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens. Viruses. 2012;4(7):1075-92. https://doi.org/10.3390/v4071075. PMid:22852041.

Haislip NA, Gray MJ, Hoverman JT, Miller DL. Development and disease: how susceptibility to an emerging pathogen changes through anuran development. PLoS One. 2011;6(7):e22307. https://doi.org/10.1371/journal.pone.0022307. PMid:21799820.

Hamer AJ, McDonnell MJ. Amphibian ecology and conservation in the urbanizing world: a review. Biol Conserv. 2008;141(10):2432-49. https://doi.org/10.1016/j.biocon.2008.07.020.

Hoverman JT, Gray MJ, Haislip NA, Miller DL. Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses. EcoHealth. 2011;8(3):301-19. https://doi.org/10.1007/s10393-011-0717-7. PMid:22071720.

Jesús Andino F, Jones L, Maggirwar SB, Robert J. Frog virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction. Sci Rep. 2016;6(1):22508. https://doi.org/10.1038/srep22508. PMid:26931458.

Lancaster KZ, Pfeiffer JK. Viral population dynamics and virulence thresholds. Curr Opin Microbiol. 2012;15(4):525-30. https://doi.org/10.1016/j.mib.2012.05.007. PMid:22658738.

Landsberg JH, Kiryu Y, Tabuchi M, Waltzek TB, Enge KM, Reintjes-Tolen S, Preston A, Pessier AP. Co-infection by alveolate parasites and Frog virus 3-like ranavirus during an amphibian larval mortality event in Florida, USA. Dis Aquat Organ. 2013;105(2):89-99. https://doi.org/10.3354/dao02625. PMid:23872853.

Lee E, Lobigs M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of japanese encephalitis virus and murray valley encephalitis virus. J Virol. 2002;76(10):4901-11. https://doi.org/10.1128/JVI.76.10.4901-4911.2002. PMid:11967307.

Lesbarrères D, Balseiro A, Brunner J, Chinchar VG, Duffus A, Kerby J, Miller DL, Robert J, Schock DM, Waltzek T, Gray MJ. Ranavirus: past, present and future. Biol Lett. 2012;8(4):481-3. https://doi.org/10.1098/rsbl.2011.0951. PMid:22048891.

Majji S, LaPatra S, Long SM, Sample R, Bryan L, Sinning A, Chinchar VG. Rana catesbeiana virus Z (RCV-Z): a novel pathogenic ranavirus. Dis Aquat Organ. 2006;73(1):1-11. https://doi.org/10.3354/dao073001. PMid:17240747.

Mazzoni R, Mesquita AJ, Fleury LFF, Brito WME, Nunes IA, Robert J, Morales H, Coelho ASG, Barthasson DL, Galli L, Catroxo MHB. Mass mortality associated with a Frog virus 3-like Ranavirus infection in farmed tadpoles Rana catesbeiana from Brazil. Dis Aquat Organ. 2009;86(3):181-91. https://doi.org/10.3354/dao02096. PMid:20066953.

Miaud C, Pozet F, Gaudin NCG, Martel A, Pasmans F, Labrut S. Ranavirus causes mass die-offs of alpine amphibians in the southwestern Alps, France. J Wildl Dis. 2016;52(2):242-52. https://doi.org/10.7589/2015-05-113. PMid:26967128.

Miller D, Gray M, Storfer A. Ecopathology of ranaviruses infecting amphibians. Viruses. 2011;3(11):2351-73. https://doi.org/10.3390/v3112351. PMid:22163349.

Miller DL, Gray MJ, Rajeev S, Schmutzer AC, Burton EC, Merrill A, Baldwin CA. Pathologic findings in larval and juvenile anurans inhabiting farm ponds in Tennessee, USA. J Wildl Dis. 2009;45(2):314-24. https://doi.org/10.7589/0090-3558-45.2.314. PMid:19395741.

Miller DL, Rajeev S, Gray MJ, Baldwin CA. Frog virus 3 infection, cultured American bullfrogs. Emerg Infect Dis. 2007;13(2):342-3. https://doi.org/10.3201/eid1302.061073. PMid:17479910.

Morales HD, Abramowitz L, Gertz J, Sowa J, Vogel A, Robert J. Innate immune responses and permissiveness to ranavirus infection of peritoneal leukocytes in the frog Xenopus laevis. J Virol. 2010;84(10):4912-22. https://doi.org/10.1128/JVI.02486-09. PMid:20200236.

Morales HD, Robert J. Characterization of primary and memory CD8 T-cell responses against ranavirus (FV3) in Xenopus laevis. J Virol. 2007;81(5):2240-8. https://doi.org/10.1128/JVI.01104-06. PMid:17182687.

Neves PV, Catroxo MH, Hipolito M, Oliveira CR, Ferreira CM. Uso de anticorpos policlonais, microscopia eletrônica e histologia para detecção de partículas semelhantes ao iridovírus em rãs-touro. Bol Inst Pesca. 2016;42(3):523-31. https://doi.org/10.20950/1678-2305.2016v42n3p523.

Oliveira CR, Alfaia SR, Ikari FL, Tavares LS, Sousa RLM, Harakava R, Ferreira CM. Detection and molecular characterization of Frog virus 3 in bullfrogs from frog farms in Brazil. Aquaculture. 2020;516:734575. https://doi.org/10.1016/j.aquaculture.2019.734575.

Robert J, Abramowitz L, Gantress J, Morales HD. Xenopus laevis: a possible vector of Ranavirus infection? J Wildl Dis. 2007;43(4):645-52. https://doi.org/10.7589/0090-3558-43.4.645. PMid:17984259.

Robert J, Jancovich JK. Recombinant ranaviruses for studying evolution of host–pathogen interactions in ectothermic vertebrates. Viruses. 2016;8(7):187. https://doi.org/10.3390/v8070187. PMid:27399758.

Robert J, Morales H, Buck W, Cohen N, Marr S, Gantress J. Adaptive immunity and histopathology in Frog virus 3-infected Xenopus. Virology. 2005;332(2):667-75. https://doi.org/10.1016/j.virol.2004.12.012. PMid:15680432.

Rollins-Smith LA. Metamorphosis and the amphibian immune system. Immunol Rev. 1998;166(1):221-30. https://doi.org/10.1111/j.1600-065X.1998.tb01265.x. PMid:9914915.

Rollins-Smith LA. Amphibian immunity-stress, disease, and climate change. Dev Comp Immunol. 2017;66:111-9. https://doi.org/10.1016/j.dci.2016.07.002. PMid:27387153.

Sasso T, Lopes CM, Valentini A, Dejean T, Zamudio K, Haddad CFB, Martins M. Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: potential application for conservation of a rich and threatened fauna. Biol Conserv. 2017;215:225-32. https://doi.org/10.1016/j.biocon.2017.09.015.

Schloegel LM, Ferreira CM, James TY, Hipolito M, Longcore JE, Hyatt AD, Yabsley M, Martins AMCPF, Mazzoni R, Davies AJ, Daszak P. The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim Conserv. 2010;13:53-61. https://doi.org/10.1111/j.1469-1795.2009.00307.x.

Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, Lee M, Zhao S, Wangen C, Ferreira CM, Hipolito M, Davies AJ, Cuomo CA, Daszak P, James TY. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol. 2012;21(21):5162-77. https://doi.org/10.1111/j.1365-294X.2012.05710.x. PMid:22857789.

Seixas JT Fo, Camargo C Fo, Pereira MM, Martins AMCRPF, Ribeiro OP Fo, Mello SCRP, Cassiano LL, Hipolito M. Histopathological aspects of the liver of free-living and farmed bullfrogs (Lithobates catesbeianus). Braz J Vet Res Anim Sci. 2017;46:275-9. https://doi.org/10.1590/s1806-92902017000400001.

Soto-Azat C, Peñafiel-Ricaurte A, Price SJ, Sallaberry-Pincheira N, García MP, Alvarado-Rybak M, Cunningham AA. Xenopus laevis and emerging amphibian pathogens in Chile. EcoHealth. 2016;13(4):775-83. https://doi.org/10.1007/s10393-016-1186-9. PMid:27682604.

Teixeira PC, Vicentini IBF, Ferreira CM, França FM, Bordon IAC, Ranzani-Paiva MJT. Bullfrog hemogram under management stress. Cienc Agrotec. 2015;39(2):154-63. https://doi.org/10.1590/S1413-70542015000200007.

Vences M, Köhler J. Global diversity of amphibians (Amphibia) in freshwater. Hydrobiologia. 2008;595(1):569-80. https://doi.org/10.1007/s10750-007-9032-2.

Warne RW, Crespi EJ, Brunner JL. Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles. Funct Ecol. 2011;25(1):139-46. https://doi.org/10.1111/j.1365-2435.2010.01793.x.

World Organisation for Animal Health – OIE. Infection with Ranavirus [Internet]. Paris: OIE; 2017 [cited 2017 Sept 26]. Available from: http://www.oie.int/fileadmin/Home/eng/Health_standards/aahm/current/chapitre_ranavirus.pdf.

Downloads

Published

2020-12-23

Issue

Section

FULL ARTICLE

How to Cite

1.
Alfaia SR, Cândido M, Sousa RLM de, Harakava R, Cassiano LL, Martins AMCRP da F, et al. Experimental Frog Virus 3 infection using Brazilian strain: amphibians susceptibility. Braz. J. Vet. Res. Anim. Sci. [Internet]. 2020 Dec. 23 [cited 2024 Nov. 12];57(4):e169134. Available from: https://revistas.usp.br/bjvras/article/view/169134