Detection mecA gene and Staphylococcus aureus resistance to several antibiotics isolated from cat ear swabs at a veterinary hospital located at Surabaya – Indonesia
DOI:
https://doi.org/10.11606/issn.1678-4456.bjvras.2024.209027Keywords:
Staphylococcus aureus, Multi-drug resistance, Cat, Public healthAbstract
Cats are susceptible to S. aureus, which mainly colonizes the nose and ears of these feline species. Otitis externa in cat ears is one of the illnesses produced by S. aureus in animals. Antibiotic therapy for affected animals is the conventional treatment for infections by S. aureus. Antibiotic use during prolonged treatment and given at the wrong doses can cause germs to become resistant. Given this context, research on S. aureus isolated from cat ears and tests for antibiotic resistance and the mecA gene is required. Samples of cat ears were obtained from the Amies media using a sterile cotton swab. Bacterial isolation was done on MSA media, and then the catalase and coagulase assays were used to identify the bacteria. S. aureus isolates were evaluated for sensitivity using disks of the antibiotics cefoxitin, tetracycline, erythromycin, gentamicin, and chloramphenicol connected to MHA media. All positive isolates of S. aureus underwent MRSA testing, and then the mecA gene was detected. The sample investigation revealed that 91% (91/100) were positive for S. aureus, and 3.30% (3/91) were confirmed to be multidrug resistant (MDR) because they are resistant to 3–4 antibiotic classes. Out of the 12 MRSA isolates analyzed, the mecA gene was detected in one isolate. Inappropriate antibiotic use causes bacterial resistance in pets. Additionally, excessive antibiotic use in a population might develop acquired bacterial resistance to an antibiotic. Antibiotic use in animals must be assessed to administer medication and prevent the development of antibiotic resistance appropriately.
Downloads
References
Afnani DA, Fatih N, Effendi MH, Tyasningsih W, Khairullah AR, Kurniawan SC, Silaen OSM, Ramandianto SC, Widodo A, Hendriana K, Riwu KHP. Profile of multidrug resistance and methicillin-resistant Staphylococcus aureus (MRSA) isolated from cats in Surabaya, Indonesia. Biodiversitas. 2022;23(11):5703-9. http://dx.doi.org/10.13057/biodiv/d231121.
Akanbi OE, Njom HA, Fri J, Otigbu AC, Clarke AM. Antimicrobial susceptibility of Staphylococcus aureus isolated from recreational waters and beach sand in Eastern Cape Province of South Africa. Int J Environ Res Public Health. 2017;14(9):1001. http://dx.doi.org/10.3390/ijerph14091001. PMid:28862669.
Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GE, El Nahhas N, Mabrok MA. Methicillin-resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist. 2020;13:3255-65. http://dx.doi.org/10.2147/IDR.S272733. PMid:33061472.
Avberšek J, Papić B, Kušar D, Erjavec V, Seme K, Golob M, Zdovc I. Feline otitis externa caused by methicillinresistant Staphylococcus aureus with mixed hemolytic phenotype and overview of possible genetic backgrounds. Antibiotics. 2021;10(5):599. http://dx.doi.org/10.3390/antibiotics10050599. PMid:34070191.
Awosile BB, McClure JT, Saab ME, Heider LC. Antimicrobial resistance in bacteria isolated from cats and dogs from the Atlantic Provinces, Canada from 1994-2013. Can Vet J. 2018;59(8):885-93. PMid:30104781.
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26(2):185-230. http://dx.doi.org/10.1128/CMR.00059-12. PMid:23554414.
Bierowiec K, Miszczak M, Korzeniowska-Kowal A, Wzorek A, Płókarz D, Gamian A. Epidemiology of Staphylococcus pseudintermedius in cats in Poland. Sci Rep. 2021;11(1):18898. http://dx.doi.org/10.1038/s41598-021-97976-z. PMid:34556720.
Bierowiec K, Płoneczka-Janeczko K, Rypuła K. Is the colonisation of Staphylococcus aureus in pets associated with their close contact with owners? PLoS One. 2016;11(5):e0156052. http://dx.doi.org/10.1371/journal.pone.0156052. PMid:27227897.
Bonomo RA. β-lactamases: a focus on current challenges. Cold Spring Harb Perspect Med. 2017;7(1):a025239. http://dx.doi.org/10.1101/cshperspect.a025239. PMid:27742735.
Bruce SA, Smith JT, Mydosh JL, Ball J, Needle DB, Gibson R, Andam CP. Shared antibiotic resistance and virulence genes in Staphylococcus aureus from diverse animal hosts. Sci Rep. 2022;12(1):4413. http://dx.doi.org/10.1038/s41598- 022-08230-z. PMid:35292708.
Clinical & Laboratory Standards Institute – CLSI. Performance standards for antimicrobial susceptibility testing in CLSI supplement M100. Wayne: CLSI; 2020.
Corona F, Martinez JL. Phenotypic resistance to antibiotics. Antibiotics. 2013;2(2):237-55. http://dx.doi.org/10.3390/antibiotics2020237. PMid:27029301.
Dache A, Dona A, Ejeso A. Inappropriate use of antibiotics, its reasons and contributing factors among communities of Yirgalem town, Sidama regional state, Ethiopia: a cross-sectional study. SAGE Open Med. 2021;9:20503121211042461. http://dx.doi.org/10.1177/20503121211042461. PMid:34504704.
Dafale NA, Srivastava S, Purohit HJ. Zoonosis: an emerging link to antibiotic resistance under “one health approach”. Indian J Microbiol. 2020;60(2):139-52. http://dx.doi.org/10.1007/s12088-020-00860-z. PMid:32255846.
Dalton KR, Rock C, Carroll KC, Davis MF. One health in hospitals: how understanding the dynamics of people, animals, and the hospital built-environment can be used to better inform interventions for antimicrobial-resistant gram-positive infections. Antimicrob Resist Infect Control. 2020;9(1):78. http://dx.doi.org/10.1186/s13756-020-00737-2. PMid:32487220.
Damborg P, Broens EM, Chomel BB, Guenther S, Pasmans F, Wagenaar JA, Weese JS, Wieler LH, Windahl U, Vanrompay D, Guardabassi L. Bacterial zoonoses transmitted by household pets: state-of-the-art and future perspectives for targeted research and policy actions. J Comp Pathol. 2016;155(1, Suppl 1):S27-40. http://dx.doi.org/10.1016/j.jcpa.2015.03.004. PMid:25958184.
Darphorn TS, Bel K, Koenders-van Sint Anneland BB, Brul S, Ter Kuile BH. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Sci Rep. 2021;11(1):2136. http://dx.doi.org/10.1038/s41598-021-81683-w. PMid:33483623.
Decline V, Effendi MH, Rahmaniar RP, Yanestria SM, Harijani N. Profile of antibiotic-resistant and presence of methicillin-resistant Staphylococcus aureus from nasal swab of dogs from several animal clinics in Surabaya, Indonesia. Int J One Health. 2020;6(1):90-4. http://dx.doi.org/10.14202/IJOH.2020.90-94.
DeMeester KE, Liang H, Jensen MR, Jones ZS, D’Ambrosio EA, Scinto SL, Zhou J, Grimes CL. Synthesis of functionalized N-acetyl muramic acids to probe bacterial cell wall recycling and biosynthesis. J Am Chem Soc. 2018;140(30):9458-65. http://dx.doi.org/10.1021/jacs.8b03304. PMid:29986130.
Deutsch DR, Utter B, Verratti KJ, Sichtig H, Tallon LJ, Fischetti VA. Extra-chromosomal DNA sequencing reveals episomal prophages capable of impacting virulence factor expression in Staphylococcus aureus. Front Microbiol. 2018;9:1406. http://dx.doi.org/10.3389/fmicb.2018.01406. PMid:30013526.
Dey TK, Shome BR, Bandyopadhyay S, Goyal NK, Lundkvist Å, Deka RP, Shome R, Venugopal N, Grace D, Sharma G, Rahman H, Lindahl JF. Molecular characterization of methicillin-resistant Staphylococci from the dairy value chain in two Indian states. Pathogens. 2023;12(2):344. http://dx.doi.org/10.3390/pathogens12020344. PMid:36839616.
Dhingra S, Rahman NAA, Peile E, Rahman M, Sartelli M, Hassali MA, Islam T, Islam S, Haque M. Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front Public Health. 2020;8:535668. http://dx.doi.org/10.3389/fpubh.2020.535668. PMid:33251170.
Effendi MH, Hisyam MAM, Hastutiek P, Tyasningsih W. Detection of coagulase gene in Staphylococcus aureus from several dairy farms in East Java, Indonesia, by polymerase chain reaction. Vet World. 2019;12(1):68-71. http://dx.doi.org/10.14202/vetworld.2019.68-71. PMid:30936656.
Elnageh HR, Hiblu MA, Abbassi MS, Abouzeed YM, Ahmed MO. Prevalence and antimicrobial resistance of Staphylococcus species isolated from cats and dogs. Open Vet J. 2021;10(4):452-6. http://dx.doi.org/10.4314/ovj.v10i4.13. PMid:33614441.
Elshamy AA, Aboshanab KM, Yassien MA, Hassouna NA. Prevalence of plasmid-mediated resistance genes among multidrug-resistant uropathogens in Egypt. Afr Health Sci. 2020;20(1):190-8. http://dx.doi.org/10.4314/ahs.v20i1.24. PMid:33402907.
Fergestad ME, Stamsås GA, Morales Angeles D, Salehian Z, Wasteson Y, Kjos M. Penicillin-binding protein PBP2a provides variable levels of protection toward different β-lactams in Staphylococcus aureus RN4220. MicrobiologyOpen. 2020;9(8):e1057. http://dx.doi.org/10.1002/mbo3.1057. PMid:32419377.
Feßler AT, Scholtzek AD, Schug AR, Kohn B, Weingart C, Schink A-K, Bethe A, Lübke-Becker A, Schwarz S. Antimicrobial and biocide resistance among feline and canine Staphylococcus aureus and Staphylococcus pseudintermedius isolates from diagnostic submissions. Antibiotics. 2022;11(2):127. http://dx.doi.org/10.3390/antibiotics11020127. PMid:35203730.
Fisher JF, Mobashery S. β-lactam resistance mechanisms: gram-positive bacteria and Mycobacterium tuberculosis. Cold Spring Harb Perspect Med. 2016;6(5):a025221. http://dx.doi.org/10.1101/cshperspect.a025221. PMid:27091943.
Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillinbinding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 2014;66(8):572-7. http://dx.doi.org/10.1002/iub.1289. PMid:25044998.
Fitranda M, Salasia SIO, Sianipar O, Dewananda DA, Arjana AZ, Aziz F, Wasissa M, Lestari FB, Santosa CM. Methicillin-resistant Staphylococcus aureus isolates derived from humans and animals in Yogyakarta, Indonesia. Vet World. 2023;16(1):239-45. http://dx.doi.org/10.14202/vetworld.2023.239-245. PMid:36855365.
Foreman-Worsley R, Finka LR, Ward SJ, Farnworth MJ. Indoors or outdoors? An international exploration of owner demographics and decision making associated with lifestyle of pet cats. Animals. 2021;11(2):253. http://dx.doi.org/10.3390/ani11020253. PMid:33498511.
Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416-22. http://dx.doi.org/10.1016/j.cmi.2015.12.002. PMid:26706614.
Gajdács M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics. 2019;8(2):52. http://dx.doi.org/10.3390/antibiotics8020052. PMid:31052511.
Garcês A, Lopes R, Silva A, Sampaio F, Duque D, BrilhanteSimões P. Bacterial isolates from urinary tract infection in dogs and cats in portugal, and their antibiotic susceptibility pattern: a retrospective study of 5 years (2017-2021). Antibiotics. 2022;11(11):1520. http://dx.doi.org/10.3390/antibiotics11111520. PMid:36358175.
Gargano V, Gambino D, Orefice T, Cirincione R, Castelli G, Bruno F, Interrante P, Pizzo M, Spada E, Proverbio D, Vicari D, Salgado-Caxito M, Benavides JA, Cassata G. Can stray cats be reservoirs of antimicrobial resistance? Vet Sci. 2022;9(11):631. http://dx.doi.org/10.3390/vetsci9110631. PMid:36423080.
Green BN, Johnson CD, Egan JT, Rosenthal M, Griffith EA, Evans MW. Methicillin-resistant Staphylococcus aureus: an overview for manual therapists. J Chiropr Med. 2012;11(1):64-76. http://dx.doi.org/10.1016/j.jcm.2011.12.001. PMid:22942844.
Gu K, Ouyang P, Hong Y, Dai Y, Tang T, He C, Shu G, Liang X, Tang H, Zhu L, Xu Z, Yin L. Geraniol inhibits biofilm formation of methicillin-resistant Staphylococcus aureus and increase the therapeutic effect of vancomycin in vivo. Front Microbiol. 2022;13:960728. http://dx.doi.org/10.3389/fmicb.2022.960728. PMid:36147840.
Haag AF, Fitzgerald JR, Penadés JR. Staphylococcus aureus in animals. Microbiol Spectr. 2019;7(3):GPP3-0060-2019. http://dx.doi.org/10.1128/microbiolspec.GPP3-0060-2019.
Hiramatsu K, Ito T, Tsubakishita S, Sasaki T, Takeuchi F, Morimoto Y, Katayama Y, Matsuo M, Kuwahara-Arai K, Hishinuma T, Baba T. Genomic basis for methicillin resistance in Staphylococcus aureus. Infect Chemother. 2013;45(2):117-36. http://dx.doi.org/10.3947/ic.2013.45.2.117. PMid:24265961.
Joosten P, Van Cleven A, Sarrazin S, Paepe D, De Sutter A, Dewulf J. Dogs and their owners have frequent and intensive contact. Int J Environ Res Public Health. 2020;17(12):4300. http://dx.doi.org/10.3390/ijerph17124300. PMid:32560155.
Jung WK, Shin S, Park YK, Lim SK, Moon DC, Park KT, Park YH. Distribution and antimicrobial resistance profiles of bacterial species in stray cats, hospital-admitted cats, and veterinary staff in South Korea. BMC Vet Res. 2020;16(1):109. http://dx.doi.org/10.1186/s12917-020-02326-2. PMid:32272916.
Kakoullis L, Papachristodoulou E, Chra P, Panos G. Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics. 2021;10(4):415. http://dx.doi.org/10.3390/antibiotics10040415. PMid:33920199.
Kaur DC, Chate SS. Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with Special reference to newer antibiotic. J Glob Infect Dis. 2015;7(2):78-84. http://dx.doi.org/10.4103/0974-777X.157245. PMid:26069428.
Khairullah AR, Raharjo D, Rahmahani J, Suwarno, Tyasningsih W, Harijani N. Suwarno, Tyasningsih W, Harijani N. Antibiotics resistant at Staphylococcus aureus and Streptococcus sp isolated from bovine mastitis in Karangploso, East Java, Indonesia. Indian J Forensic Med Toxicol. 2019;13(4):439-44. http://dx.doi.org/10.5958/0973-9130.2019.00329.3.
Khairullah AR, Rehman S, Sudjarwo SA, Effendi MH, Ramandininto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA. Detection of mecA gene andmethicillinresistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000 Res. 2022;11:722. http://dx.doi.org/10.12688/f1000research.122225.1.
Kim SJ, Chang J, Singh M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta. 2015;1848(1, Suppl 1 Pt B):350-62. http://dx.doi.org/10.1016/j.bbamem.2014.05.031. PMid:24915020.
Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019;17(1):87. http://dx.doi.org/10.1186/s12915-019-0703-z. PMid:31699101.
Laurent F, Chardon H, Haenni M, Bes M, Reverdy ME, Madec JY, Lagier E, Vandenesch F, Tristan A. MRSA harboring mecA variant gene mecC, France. Emerg Infect Dis. 2012;18(9):1465-7. http://dx.doi.org/10.3201/eid1809.111920. PMid:22932400.
Lehtinen S, Huisman JS, Bonhoeffer S. Evolutionary mechanisms that determine which bacterial genes are carried on plasmids. Evol Lett. 2021;5(3):290-301. http://dx.doi.org/10.1002/evl3.226. PMid:34136276.
Mala L, Lalouckova K, Skrivanova E. Bacterial skin infections in livestock and plant-based alternatives to their antibiotic treatment. Animals. 2021;11(8):2473. http://dx.doi.org/10.3390/ani11082473. PMid:34438930.
Maslikov SN, Bely DD, Samoiliuk VV, Vakulik VV, Spitsyna TL. Pathogenetic role of Staphylococcus aureus in purulent keratoconjunctivitis in cats. Regul Mech Biosyst. 2019;10(4):507-12. http://dx.doi.org/10.15421/021974.
McAdow M, Missiakas DM, Schneewind O. Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun. 2012;4(2):141-8. http://dx.doi.org/10.1159/000333447. PMid:22222316.
Medveďová A, Havlíková A, Lehotová V, Valík Ľ. Staphylococcus aureus 2064 growth as affected by temperature and reduced water activity. Ital J Food Saf. 2019;8(4):8287. http://dx.doi.org/10.4081/ijfs.2019.8287. PMid:31897398.
Melander RJ, Melander C. The challenge of overcoming antibiotic resistance: an adjuvant approach? ACS Infect Dis. 2017;3(8):559-63. http://dx.doi.org/10.1021/acsinfecdis.7b00071. PMid:28548487.
Miragaia M. Factors contributing to the evolution of mecAMediated β-lactam resistance in Staphylococci: update and new insights from Whole Genome Sequencing (WGS). Front Microbiol. 2018;9:2723. http://dx.doi.org/10.3389/fmicb.2018.02723. PMid:30483235.
Nimer NA. Nosocomial infection and antibiotic-resistant threat in the Middle East. Infect Drug Resist. 2022;15:631-9. http://dx.doi.org/10.2147/IDR.S351755. PMid:35241915.
Noto MJ, Kreiswirth BN, Monk AB, Archer GL. Gene acquisition at the insertion site for SCCmec, the genomic island conferring methicillin resistance in Staphylococcus aureus. J Bacteriol. 2008;190(4):1276-83. http://dx.doi.org/10.1128/JB.01128-07. PMid:18083809.
Nwobodo DC, Ugwu MC, Anie CO, Al-Ouqaili MTS, Ikem JC, Chigozie UV, Saki M. Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022;36(9):e24655. http://dx.doi.org/10.1002/jcla.24655. PMid:35949048.
Otto M. Coagulase-negative Staphylococci as reservoirs of genes facilitating MRSA infection: staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. BioEssays. 2013;35(1):4-11. http://dx.doi.org/10.1002/bies.201200112. PMid:23165978.
Overgaauw PAM, Vinke CM, van Hagen MAE, Lipman LJA. A one health perspective on the human-companion animal relationship with emphasis on zoonotic aspects. Int J Environ Res Public Health. 2020;17(11):3789. http://dx.doi.org/10.3390/ijerph17113789. PMid:32471058.
Paterson IK, Hoyle A, Ochoa G, Baker-Austin C, Taylor NG. Optimising antibiotic usage to treat bacterial infections. Sci Rep. 2016;6(1):37853. http://dx.doi.org/10.1038/srep37853. PMid:27892497.
Rahmaniar RP, Yunita MN, Effendi MH, Yanestria SM. Encoding gene for methicillin resistant Staphylococcus aureus (MRSA) isolated from nasal swab of dogs. Indian Vet J. 2020;97(2):37-40.
Rajabiani A, Kamrani F, Boroumand MA, Saffar H. mec-A-mediated resistance in Staphylococcus aureus in a referral Hospital, Tehran, Iran. Jundishapur J Microbiol. 2014;7(4):e9181. http://dx.doi.org/10.5812/jjm.9181. PMid:25147695.
Ramandinianto SC, Khairullah AR, Effendi MH. MecA gene and methicillin resistant Staphylococcus aureus (MRSA) isolated from dairy farms in East Java, Indonesia. Biodiversitas. 2020;21(8):3562-8. http://dx.doi.org/10.13057/biodiv/d210819.
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482- 501. http://dx.doi.org/10.3934/microbiol.2018.3.482. PMid:31294229.
Rolo J, Worning P, Nielsen JB, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Tomasz A, Westh H, de Lencastre H, Miragaia M. Evolutionary origin of the Staphylococcal Cassette Chromosome mec (SCCmec). Antimicrob Agents Chemother. 2017;61(6):e02302-16. http://dx.doi.org/10.1128/AAC.02302-16. PMid:28373201.
Rosenfeld RM, Schwartz SR, Cannon CR, Roland PS, Simon GR, Kumar KA, Huang WW, Haskell HW, Robertson PJ. Clinical practice guideline: acute otitis externa. Otolaryngol Head Neck Surg. 2014;150(1, Suppl):S1-24. http://dx.doi.org/10.1177/0194599813514365. PMid:24491310.
Saber H, Jasni AS, Jamaluddin TZMT, Ibrahim R. A review of Staphylococcal Cassette Chromosome mec (SCCmec) types in Coagulase-Negative Staphylococci (CoNS) species. Malays J Med Sci. 2017;24(5):7-18. http://dx.doi.org/10.21315/mjms2017.24.5.2. PMid:29386968.
Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101. http://dx.doi.org/10.1016/j.sjbs.2014.08.002. PMid:25561890.
Stefańska I, Kwiecień E, Kizerwetter-Świda M, ChrobakChmiel D, Rzewuska M. Tetracycline, macrolide and lincosamide resistance in Streptococcus canis strains from companion animals and its genetic determinants. Antibiotics. 2022;11(8):1034. http://dx.doi.org/10.3390/antibiotics11081034. PMid:36009903.
Tahi AA, Sousa S, Madani K, Silva CLM, Miller FA. Ultrasound and heat treatment effects on Staphylococcus aureus cell viability in orange juice. Ultrason Sonochem. 2021;78:105743. http://dx.doi.org/10.1016/j.ultsonch.2021.105743. PMid:34525437.
Thairu Y, Nasir IA, Usman Y. Laboratory perspective of gram staining and its significance in investigations of infectious diseases. Sub-Saharan Afr J Med. 2014;1(4):168-74. http://dx.doi.org/10.4103/2384-5147.144725.
Thakur P, Nayyar C, Tak V, Saigal K. Mannitol-fermenting and tube coagulase-negative Staphylococcal isolates: unraveling the diagnostic dilemma. J Lab Physicians. 2017;9(1):65-6. http://dx.doi.org/10.4103/0974-2727.187926. PMid:28042222.
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK, Hossain MJ, Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021;14(12):1750-66. http://dx.doi.org/10.1016/j.jiph.2021.10.020. PMid:34756812.
Van TTH, Yidana Z, Smooker PM, Coloe PJ. Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses. J Glob Antimicrob Resist. 2020;20:170-7. http://dx.doi.org/10.1016/j.jgar.2019.07.031. PMid:31401170.
Wales AD, Davies RH. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics. 2015;4(4):567-604. http://dx.doi.org/10.3390/antibiotics4040567. PMid:27025641.
Wallinga D, Smit LAM, Davis MF, Casey JA, Nachman KE. A review of the effectiveness of Current US policies on antimicrobial use in meat and poultry production. Curr Environ Health Rep. 2022;9(2):339-54. http://dx.doi.org/10.1007/s40572-022-00351-x. PMid:35477845.
Waruwu YKK, Khairullah AR, Effendi MH, Lukiswanto BS, Afnani DA, Kurniawan SC, Silaen OSM, Riwu KHP, Widodo A, Ramandinianto SC. Detection of methicillinresistant Staphylococcus aureus and multidrug resistance isolated from cats in animal clinic at Sidoarjo District, East Java, Indonesia. Biodiversitas. 2023;24(1):106-11. http://dx.doi.org/10.13057/biodiv/d240114.
Widodo A, Lamid M, Effendi MH, Khailrullah AR, Kurniawan SC, Silaen OSM, Riwu KHP, Yustinasari LR, Afnani DA, Dameanti FNAEP, Ramandinianto SC. Antimicrobial resistance characteristics of multidrug resistance and extended spectrum beta-lactamase producing Escherichia coli from several dairy farms in Probolinggo, Indonesia. Biodiversitas. 2023;24(1):215-21. http://dx.doi.org/10.13057/biodiv/d240126.
Widodo A, Lamid M, Effendi MH, Khairullah AR, Riwu KHP, Yustinasari LR, Kurniawan SC, Ansori ANM, Silaen OSM, Dameanti FNAEP. Antibiotic sensitivity profile of multidrug-resistant (MDR) Escherichia coli isolated from dairy cow’s milk in Probolinggo, Indonesia. Biodiversitas. 2022;23(10):4971-6. http://dx.doi.org/10.13057/biodiv/d231002.
Wielders CL, Fluit AC, Brisse S, Verhoef J, Schmitz FJ. mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol. 2002;40(11):3970-5. http://dx.doi.org/10.1128/JCM.40.11.3970-3975.2002. PMid:12409360.
Yambise D, Ariestanti CA, Budiarso TY. Isolation and Identification of Biofilm-Forming Staphylococcus aureus in Commercial Cow Milk Products. Sciscitatio. 2020;1(2):87- 93. http://dx.doi.org/10.21460/sciscitatio.2020.12.33.
Yang X, Ye W, Qi Y, Ying Y, Xia Z. Overcoming multidrug resistance in bacteria through antibiotics delivery in surfaceengineered nano-cargos: recent developments for future nano-antibiotics. Front Bioeng Biotechnol. 2021;9:696514. http://dx.doi.org/10.3389/fbioe.2021.696514. PMid:34307323.
Yunita MN, Effendi MH, Rahmaniar RP, Arifah S, Yanestria SM. Identification of spa gene for strain typing of methicillin resistant Staphylococcus aureus (MRSA) isolated from nasal swab of dogs. Biochem Cell Arch. 2020;20(1):2999-3004. http://dx.doi.org/10.35124/bca.2020.20.S1.2999.
Zanen LA, Kusters JG, Overgaauw PAM. Zoonotic Risks of Sleeping with Pets. Pathogens. 2022;11(10):1149. http://dx.doi.org/10.3390/pathogens11101149. PMid:36297206.
Zhang F, Cheng W. The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics. 2022;11(9):1215. http://dx.doi.org/10.3390/antibiotics11091215. PMid:36139994.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Veterinary Research and Animal Science
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal content is authorized under the Creative Commons BY-NC-SA license (summary of the license: https://