Analysis of the ketamine binding to total plasma protein from domestic cats
DOI:
https://doi.org/10.11606/issn.1678-4456.bjvras.2024.219363Keywords:
Drug development, Analgesia, Felis catus, AlbuminAbstract
Ketamine is a versatile veterinary, clinical, and hospital drug. Evaluating the binding parameters of ketamine to total plasma proteins from domestic cats provides necessary information in determining the value of the pharmacokinetic parameter named distribution volume, which is used for the consequent prospection of drug concentrations in clinical trials. This work aimed to evaluate the binding rate of ketamine to total plasma proteins, the binding constant, and the binding mode to serum albumin in cats. After approval of the project by CEUA/UEM (protocol 3292020621), a plasma pool from six animals (n=6) was reinforced with ketamine concentrations aiming for ultrafiltration with a 10 kDa cutoff membrane device. The drug levels before and after ultrafiltration were analyzed using the liquid chromatography-mass spectrometry technique (LC- MS/MS). The results were calculated using a Scatchard plot to calculate the binding rate and binding constant to albumin. Docking simulations identified the most likely albumin-binding sites. The ketamine binding rate was 65% when the drug reached a plasma concentration above 300 ng⋅mL-1, and the binding constant (Kb) was 2×106 mol⋅L–1 with a positive Hill coefficient (nH) of 2.3. These results show a good correlation between the physicochemical parameters of the drug with structural evaluation by docking simulations and coherence with the values reported by other methodologies in recent literature. This work brought data on the ketamine-binding behavior in cats, an important parameter for future pharmacokinetic evaluations in the search for better protocols for the clinical use of this drug in veterinary medicine.
Downloads
References
Altmayer P, Büch U, Büch HP. Propofol binding to human blood proteins. Arzneimittelforschung. 1995;45(10):1053-6. PMid:8595056.
Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012;7(10):863-75. http://doi.org/10.1517/17460441.2012.714363. PMid:22992175.
Bordbar AK, Saboury AA, Moosavi-Movahedi AA. The shapes of Scatchard plots for systems with two sets of binding sites. Biochem Educ. 1996;24(3):172-5. http://doi.org/10.1016/0307-4412(95)00122-0.
Carter DC, Ho JX. Structure of serum albumin. Adv Protein Chem. 1994;45:153-203. http://doi.org/10.1016/S0065-3233(08)60640-3. PMid:8154369.
Casoni D, Spadavecchia C, Adami C. S-ketamine versus racemic ketamine in dogs: their relative potency as induction agents. Vet Anaesth Analg. 2015;42(3):250-9. http://doi.org/10.1111/vaa.12200. PMid:25041216.
Colclough N, Ruston L, Wood JM, MacFaul PA. Species differences in drug plasma protein binding. MedChemComm. 2014;5(7):963-7. http://doi.org/10.1039/C4MD00148F.
Combie JD, Nugent TE, Tobin T. Pharmacokinetics and protein binding of morphine in horses. Am J Vet Res. 1983;44(5):870-4. PMid:6869996.
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-50. http://doi.org/10.1007/978-1-4939-2269-7_19. PMid:25618350.
Dayton PG, Stiller RL, Cook DR, Perel JM. The binding of ketamine to plasma proteins: emphasis on human plasma. Eur J Clin Pharmacol. 1983;24(6):825-31. http://doi.org/10.1007/BF00607095. PMid:6884418.
Dinis-Oliveira RJ. Metabolism and metabolomics of ketamine: a toxicological approach. Forensic Sci Res. 2017;2(1):2-10. http://doi.org/10.1080/20961790.2017.1285219. PMid:30483613.
Diniz A, Escuder-Gilabert L, Lopes NP, Villanueva-Camañas RM, Sagrado S, Medina-Hernández MJ. Characterization of interactions between polyphenolic compounds and human serum proteins by capillary electrophoresis. Anal Bioanal Chem. 2008;391(2):625-32. http://doi.org/10.1007/s00216-008-2046-4. PMid:18418586.
Dufour C, Dangles O. Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim Biophys Acta. 2005;1721(1-3):164-73. http://doi.org/10.1016/j.bbagen.2004.10.013. PMid:15652191.
Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012;33(3):209-90. http://doi.org/10.1016/j.mam.2011.12.002. PMid:22230555.
Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005;57(12):787-96. http://doi.org/10.1080/15216540500404093. PMid:16393781.
Guthrie AM, Baum RA, Carter C, Dugan A, Jones L, Tackett T, Bailey AM. Use of Intranasal ketamine in pediatric patients in the emergency department. Pediatr Emerg Care. 2021;37(12):e1001-7. http://doi.org/10.1097/PEC.0000000000001863. PMid:31290798.
Hanna RM, Borchard RE, Schmidt SL. Plasma protein binding of ketamine and metabolite I in the cat. J Vet Pharmacol Ther. 1988;11(1):115-7. http://doi.org/10.1111/j.1365-2885.1988.tb00129.x. PMid:3379662.
Hijazi Y, Boulieu R. Protein binding of ketamine and its active metabolites to human serum. Eur J Clin Pharmacol. 2002a;58(1):37-40. http://doi.org/10.1007/s00228-002-0439-4. PMid:11956671.
Hijazi Y, Boulieu R. Contribution of CYP3A4, CYP2B6, and CYP2C9 iIsoforms to N- demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2002b;30(7):853-8. http://doi.org/10.1124/dmd.30.7.853. PMid:12065445.
Hinderling PH, Hartmann D. The pH dependency of the binding of drugs to plasma proteins in man. Ther Drug Monit. 2005;27(1):71-85. http://doi.org/10.1097/00007691-200502000-00014. PMid:15665750.
Huge V, Lauchart M, Magerl W, Schelling G, Beyer A, Thieme D, Azad SC. Effects of low-dose intranasal (S)-ketamine in patients with neuropathic pain. Eur J Pain. 2010;14(4):387-94. http://doi.org/10.1016/j.ejpain.2009.08.002. PMid:19733106.
Jonkman K, Duma A, Velzen M, Dahan A. Ketamine inhalation. Br J Anaesth. 2017;118(2):268-9. http://doi.org/10.1093/bja/aew457. PMid:28100533.
Kaka JS, Klavano PA, Hayton WL. Pharmacokinetics of ketamine in the horse. Am J Vet Res. 1979;40(7):978-81. PMid:507501.
Kragh-Hansen U. Structure and ligand binding properties of human serum albumin. Dan Med Bull. 1990;37(1):57-84. PMid:2155760.
Kronenberg RH. Ketamine as an Analgesic: parenteral, oral, rectal, subcutaneous, transdermal and intranasal administration. J Pain Palliat Care Pharmacother. 2002;16(3):27-35. http://doi.org/10.1080/J354v16n03_03. PMid:14640353.
Li R, Zhong K, Jiang J, Zhan Y, Chen X. Enantioselective determination of ketamine in dog plasma by chiral liquid chromatography–tandem mass spectrometry. Biomed Chromatogr. 2019;33(9):e4578. http://doi.org/10.1002/bmc.4578. PMid:31077428.
Marjani M, Akbarinejad V, Bagheri M. Comparison of intranasal and intramuscular ketamine-midazolam combination in cats. Vet Anaesth Analg. 2015;42(2):178-81. http://doi.org/10.1111/vaa.12183. PMid:24986665.
Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. Br J Clin Pharmacol. 2014;77(2):357-67. http://doi.org/10.1111/bcp.12094. PMid:23432384.
Otagiri M. A Molecular functional study on the interactions of drugs with plasma proteins. Drug Metab Pharmacokinet. 2005;20(5):309-23. http://doi.org/10.2133/dmpk.20.309. PMid:16272748.
Poonai N, Canton K, Ali S, Hendrikx S, Shah A, Miller M, Joubert G, Rieder M, Hartling L. Intranasal ketamine for procedural sedation and analgesia in children: a systematic review. PLoS One. 2017;12(3):e0173253. http://doi.org/10.1371/journal.pone.0173253. PMid:28319161.
Portmann S, Kwan HY, Theurillat R, Schmitz A, Mevissen M, Thormann W. Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine in vitro. J Chromatogr A. 2010;1217(51):7942-8. http://doi.org/10.1016/j.chroma.2010.06.028. PMid:20609441.
Qi Z-D, Zhou B, Qi X, Chuan S, Liu Y, Dai J. Interaction of rofecoxib with human serum albumin: determination of binding constants and the binding site by spectroscopic methods. J Photochem Photobiol Chem. 2008;193(2-3):81-8. http://doi.org/10.1016/j.jphotochem.2007.06.011.
Rao LK, Flaker AM, Friedel CC, Kharasch ED. Role of cytochrome P4502B6 polymorphisms in ketamine metabolism and clearance. Anesthesiology. 2016;125(6):1103-12. http://doi.org/10.1097/ALN.0000000000001392. PMid:27763887.
Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes. Clin Pharmacokinet. 2013;52(1):1-8. http://doi.org/10.1007/s40262-012-0018-5. PMid:23150213.
Schaller J, Gerber S, Kämpfer U, Lejon S, Trachsel C. Human blood plasma proteins: structure and function. West Sussex: Wiley; 2008. 538 p. http://doi.org/10.1002/9780470724378.
Shteamer JW, Harvey RD, Spektor B, Curseen K, Egan K, Chen Z, Gillespie TW, Sniecinski RM, Singh V. Safety of intranasal ketamine for reducing uncontrolled cancer-related pain: protocol of a phase I/II clinical trial. JMIR Res Protoc. 2019;8(4):e12125. http://doi.org/10.2196/12125. PMid:31038469.
Singh V, Gillespie TW, Harvey RD. Intranasal ketamine and its potential role in cancer-related pain. Pharmacother J Hum Pharmacol Drug Ther. 2018;38(3):390-401. http://doi.org/10.1002/phar.2090. PMid:29396996.
Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929-39. http://doi.org/10.1038/nrd3287. PMid:21119731.
Taylor SS, Tappin SW, Dodkin SJ, Papasouliotis K, Casamian-Sorrosal D, Tasker S. Serum protein electrophoresis in 155 cats. J Feline Med Surg. 2010;12(8):643-53. http://doi.org/10.1016/j.jfms.2010.03.018. PMid:20655494.
Tinoco I, Sauer K, Wang J, Puglisi J, Harbison G, Rovnyak D. Physical chemistry: principles and applications in biological sciences. 5th ed. Boston: Pearson; 2013. 724 p.
Trainor GL. The importance of plasma protein binding in drug discovery. Expert Opin Drug Discov. 2007;2(1):51-64. http://doi.org/10.1517/17460441.2.1.51. PMid:23496037.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. http://doi.org/10.1002/jcc.21334. PMid:19499576.
Weiss DJ, Wardrop KJ. Schalm’s veterinary hematology. 6th ed. Hoboken: Wiley-Blackwell; 2010. 1206 p.
Williams ML, Mager DE, Parenteau H, Gudi G, Tracy TS, Mulheran M, Wainer IW. Effects of protein calorie malnutrition on the pharmacokinetics of ketamine in rats. Drug Metab Dispos. 2004;32(8):786-93. http://doi.org/10.1124/dmd.32.8.786. PMid:15258102.
Yamasaki K, Chuang VTG, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim Biophys Acta. 2013;1830(12):5435-43. http://doi.org/10.1016/j.bbagen.2013.05.005. PMid:23665585.
Yang F, Zhang Y, Liang H. Interactive association of drugs binding to human serum albumin. Int J Mol Sci. 2014;15(3):3580-95. http://doi.org/10.3390/ijms15033580. PMid:24583848.
Ye M, Nagar S, Korzekwa K. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding. Biopharm Drug Dispos. 2016;37(3):123-41. http://doi.org/10.1002/bdd.1996. PMid:26531057.
Yokomaku K, Akiyama M, Morita Y, Kihira K, Komatsu T. Core-shell protein clusters comprising haemoglobin and recombinant feline serum albumin as an artificial O2 carrier for cats. J Mater Chem B Mater Biol Med. 2018;6(16):2417-25. http://doi.org/10.1039/C8TB00211H. PMid:32254458.
Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate Junior CA, Gould TD. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. 2018;70(3):621-60. http://doi.org/10.1124/pr.117.015198. PMid:29945898.
Zeiler GE, Dzikiti BT, Fosgate GT, Stegmann FG, Venter FJ, Rioja E. Anaesthetic, analgesic and cardiorespiratory effects of intramuscular medetomidine-ketamine combination alone or with morphine or tramadol for orchiectomy in cats. Vet Anaesth Analg. 2014;41(4):411-20. http://doi.org/10.1111/vaa.12136. PMid:24576259.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Veterinary Research and Animal Science
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal content is authorized under the Creative Commons BY-NC-SA license (summary of the license: https://
Funding data
-
Fundação Araucária
Grant numbers 87/2021 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
-
Financiadora de Estudos e Projetos