Harnessing silver nanoparticles to promote swine growth: a safer alternative to antibiotics
DOI:
https://doi.org/10.11606/issn.1678-4456.bjvras.2025.220959Keywords:
Feed additives, Nanotechnology, Carcass characteristics, Pig, NutritionAbstract
Antibiotics as growth promoters (AGP) have historically been a staple of the swine production industry. However, recent developments indicate that their use has several consequences for humanity’s sanitary safety. Silver nanoparticles (AgNPs) have antibiotic properties and could represent a viable alternative. In the current study, only AgNPs incorporated in a carbohydrate (AgNPs@Carb) were characterized and tested against Gram-positive and Gram-negative bacterial strains. To assess AgNPs@Carb action as an alternative to AGP, 32 barrows and 32 gilts were housed in a growing finishing facility with 70 days of age and an average weight of 24.08 ± 2.72 kg. They were fed four treatments: NC – no addition of AgNPs@Carb, NP05 - addition of 5 mg kg-1 of AgNPs@Carb, NP10 - 10 mg kg-1 of AgNPs@Carb, and NP15 - 15 mg kg-1 of AgNPs@Carb; each treatment had eight replicates of two animals (pen). The 83 days of the trial were divided into two periods: growing (0–42) and finishing (43–83). AgNPs@Carb addition to the diet improved average daily feed intake and chilled carcass yield and decreased diarrhea frequency and backfat thickness. AgNPs@Carb showed potential effects in acting as a feed additive in swine diets, and the ideal dose was estimated by regression at 7 mg kg-1. These findings offer a possible option to reduce the risk of antibiotics overuse, at least partially during swine feeding, for safer and cleaner production.
Downloads
References
Aarestrup F. Sustainable farming: get pigs off antibiotics. Nature. 2012;486(7404):465-6. http://doi.org/10.1038/486465a. PMid:22739296.
Abad-Álvaro I, Trujillo C, Bolea E, Laborda F, Fondevila M, Latorre MA, Castillo JR. Silver nanoparticles-clays nanocomposites as feed additives: characterization of silver species released during in vitro digestions. Effects on silver retention in pigs. Microchem J. 2019;149:104040. http://doi.org/10.1016/j.microc.2019.104040.
Ahmadi J. Aplicação de diferentes níveis de nanopartículas de prata em alimentos no desempenho e alguns parâmetros sanguíneos de frangos de corte. World Appl Sci J. 2009;7:24-7.
Al-Sultan SI, Hereba ART, Hassanein KM, Abd-Allah SM, Mahmoud UT, Abdel-Raheem SM. The impact of dietary inclusion of silver nanoparticles on growth performance, intestinal morphology, caecal microflora, carcass traits and blood parameters of broiler chickens. Ital J Anim Sci. 2022;21(1):967-78. http://doi.org/10.1080/1828051X.2022.2083528.
Alves LKS, Gameiro AH, Schinckel AP, Garbossa CAP. Development of a swine production cost calculation model. Animals. 2022;12(17):2229. http://doi.org/10.3390/ani12172229. PMid:36077949.
Arabi F, Imandar M, Negahdary M, Imandar M, Noughabi MT, Akbari-Dastjerdi H, Fazilati M. Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann Biol Res. 2012;3(7):3679-85.
Assis DR, Ueyama VN, Santos CC, Davolos MR, Jafelicci Junior M. Two-dimensional synthesis of silver nanoparticle in situ Langmuir films from the reduction of silver sulfadiazine. Thin Solid Films. 2022;746:139119. http://doi.org/10.1016/j.tsf.2022.139119.
Associação Brasileira de Criadores de Suínos. Método brasileiro de classificação de carcaças. Brasília: Estrela; 1973. 17 p.
Bates MG, Risselada M, Peña-Hernandez DC, Hendrix K, Moore GE. Antibacterial activity of silver nanoparticles against Escherichia coli and methicillin-resistant Staphylococcus pseudintermedius is affected by incorporation into carriers for sustained release. Am J Vet Res. 2024;85(3):1-11. http://doi.org/10.2460/ajvr.23.10.0229. PMid:38194717.
Ben-Jeddou K, Bakir M, Jiménez MS, Gómez MT, Abad-Álvaro I, Laborda F. Nanosilver-based materials as feed additives: evaluation of their transformations along in vitro gastrointestinal digestion in pigs and chickens by using an ICP-MS based analytical platform. Anal Bioanal Chem. 2024;416(16):3821-33. http://doi.org/10.1007/s00216-024-05323-8.
Bibby DC, Davies NM, Tucker IG. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int J Pharm. 2000;197(1-2):1-11. http://doi.org/10.1016/S0378-5173(00)00335-5. PMid:10704788.
Cattò C, Garuglieri E, Borruso L, Erba D, Casiraghi MC, Cappitelli F, Villa F, Zecchin S, Zanchi R. Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model. Environ Pollut. 2019;245:754-63. http://doi.org/10.1016/j.envpol.2018.11.019. PMid:30500755.
Ceron MS, de Oliveira V, Pieve NANN, Dias e Silva NC, Rossi CAR, Fraga BN, Muniz HCM, Kessler AM. Nonlinear equations to determine the growth curve of immunocastrated pigs. Pesqui Agropecu Bras. 2020;55:e01184. http://doi.org/10.1590/s1678-3921.pab2020.v55.01184.
Couvreur P. Nanoparticles in drug delivery: Past, present, and future. Adv Drug Deliv Rev. 2013;65(1):21-3. http://doi.org/10.1016/j.addr.2012.04.010. PMid:22580334.
Cui L, Chen P, Chen S, Yuan Z, Yu C, Ren B, Zhang K. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal Chem. 2013;85(11):5436-43. http://doi.org/10.1021/ac400245j. PMid:23656550.
Dimantov A, Greenberg M, Kesselman E, Shimoni E. Study of high amylose corn starch as food grade enteric coating in a microcapsule model system. Innov Food Sci Emerg Technol. 2004;5(1):93-100. http://doi.org/10.1016/j.ifset.2003.11.003.
Dosoky WM, Fouda MM, Alwan AB, Abdelsalam NR, Taha AE, Ghareeb RY, El-Aassar MR, Khafaga AF. Dietary supplementation of silver-silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Sci Rep. 2021;11(1):4166. http://doi.org/10.1038/s41598-021-83753-5. PMid:33603060.
Durán N, Durán M, Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. NBM. 2016;12(3):789-99. http://doi.org/10.1016/j.nano.2015.11.016. PMid:26724539.
Elkloub K, Moustafa M, Ghazalah AA, Rehan AAA. Effect of dietary nano silver on broiler performance. Int J Poult Sci. 2015;14(3):177-82. http://doi.org/10.3923/ijps.2015.177.182.
Fatema UK, Rahman MM, Islam MR, Mollah MYA, Susan MABH. Silver/poly (vinyl alcohol) nanocomposite film prepared using water in oil microemulsion for antibacterial applications. J Coll Inter Sci. 2018;514:648-55. http://doi.org/10.1016/j.jcis.2017.12.084. PMid:29310094.
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662-8. http://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3. PMid:11033548.
Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim Feed Sci Technol. 2009;150(3-4):259-69. http://doi.org/10.1016/j.anifeedsci.2008.09.003.
Fondevila M. Potential use of silver nanoparticles as an additive in animal feeding. In: Perez DP, editor. Silver nanoparticles. London: IntechOpen; 2010. p. 325-34. http://doi.org/10.5772/8509.
Fouda MM, Dosoky WM, Radwan NS, Abdelsalam NR, Taha AE, Khafaga AF. Oral administration of silver nanoparticles–adorned starch as a growth promotor in poultry: immunological and histopathological study. Int J Biol Macromol. 2021;187:830-9. http://doi.org/10.1016/j.ijbiomac.2021.07.157. PMid:34331979.
Freire BM, Cavalcanti YT, Lange CN, Pieretti JC, Pereira RM, Gonçalves MC, Nakazano G, Seabra AB, Batista BL. Evaluation of collision/reaction gases in single-particle ICP-MS for sizing selenium nanoparticles and assessment of their antibacterial activity. Nanotech. 2022;33(35):355702. http://doi.org/10.1088/1361-6528/ac723e. PMid:35605588.
Gaillard C, Brossard L, Dourmad JY. Improvement of feed and nutrient efficiency in pig production through precision feeding. Anim Feed Sci Technol. 2020;268:114611. http://doi.org/10.1016/j.anifeedsci.2020.114611.
Gautron L, Layé S. Neurobiology of inflammation-associated anorexia. Front Neurosci. 2009;3(59):1-10. http://doi.org/10.3389/neuro.23.003.2009.
Gimenez-Ingalaturre AC, Rubio E, Chueca P, Laborda F, Goñi P. Contribution to optimization and standardization of antibacterial assays with silver nanoparticles: the culture medium and their aggregation. J Microbiol Methods. 2022;203:106618. http://doi.org/10.1016/j.mimet.2022.106618. PMid:36368469.
Guidoni AL. Melhoria de processos para a tipificação e valorização de carcaças suínas no Brasil. In: Conferência Internacional Virtual sobre Qualidade de Carne Suína: Bem-estar, Transporte, Abate e Consumidor; 2000; Concórdia. Concórdia: Embrapa Suínos e Aves; 2000. p. 221-34. (Embrapa Suínos e Aves. Documentos; no. 69).
Hartemann P, Hoet P, Proykova A, Fernandes T, Baun A, De Jong W, Wijnhoven S. Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Mater Today. 2015;18(3):122-3. http://doi.org/10.1016/j.mattod.2015.02.014.
Hill EK, Li J. Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol. 2017;8:26. http://doi.org/10.1186/s40104-017-0157-5. PMid:28316783.
Jiménez MS, Bakir M, Ben-Jeddou K, Bolea E, Pérez-Arantegui J, Laborda F. Comparative study of extraction methods of silver species from faeces of animals fed with silver-based nanomaterials. Mikrochim Acta. 2023;190(6):204. http://doi.org/10.1007/s00604-023-05777-0. PMid:37160774.
Khafaga AF, Fouda MM, Alwan AB, Abdelsalam NR, Taha AE, Atta MS, Dosoky WM. Silver-Silica nanoparticles induced dose-dependent modulation of histopathological, immunohistochemical, ultrastructural, proinflammatory, and immune status of broiler chickens. BMC Vet Res. 2022;18(1):365. http://doi.org/10.1186/s12917-022-03459-2. PMid:36195872.
Kick AR, Tompkins MB, Flowers WL, Whisnant CS, Almond GW. Effects of stress associated with weaning on the adaptive immune system in pigs. J Anim Sci. 2012;90(2):649-56. http://doi.org/10.2527/jas.2010-3470. PMid:21926316.
Kim JC, Mullan BP, Frey B, Payne HG, Pluske JR. Whole body protein deposition and plasma amino acid profiles in growing and/or finishing pigs fed increasing levels of sulfur amino acids with and without Escherichia coli lipopolysaccharide challenge. J Anim Sci 2012 Dec; 90(Suppl 4):362-5. http://doi.org/10.2527/jas.53821. PMid: 23365380.
Klauke TN, Piñeiro M, Schulze-Geisthövel S, Plattes S, Selhorst T, Petersen B. Coherence of animal health, welfare and carcass quality in pork production chains. Meat Sci. 2013;95(3):704-11. http://doi.org/10.1016/j.meatsci.2013.03.022. PMid:23602397.
Kotb OA, Attia AI, Reda FM, Mahgoub SA, Alagawany M, El-Kholy MS. Impact of silver nanoparticles (Ag-NPs) as a dietary supplement on growth performance, carcass traits, blood metabolites, digestive enzymes, and cecal microbiota of growing rabbits. Ann Anim Sci. 2024;24(4):1311-22. http://doi.org/10.2478/aoas-2024-0034.
Lara HH, Ayala-Núñez NV, Ixtepan-Turrent L, Rodríguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 2010;8:1. http://doi.org/10.1186/1477-3155-8-1. PMid:20145735.
Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115-22. http://doi.org/10.1007/s00253-009-2159-5. PMid:19669753.
Liu F, Brewster CJ, Gilmour SL, Henman DJ, Smits RJ, Luxford BG, Dunshea FR, Pluske JR, Campbell RG. Relationship between energy intake and growth performance and body composition in pigs selected for low backfat thickness. J Anim Sci. 2021 Dec; 99(12):skab342. http://doi.org/10.1093/jas/skab342. PMid:34791287.
Lopes LQS, Guerim P, Santos RCV, Marquezan FK, Marquezan PK. The influence of different culture media on Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus biofilm formation. Biosci J. 2023;39(e39096):1981-3163. http://doi.org/10.14393/BJ-v39n0a2023-68631.
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592-9. http://doi.org/10.1016/j.tips.2009.08.004. PMid:19837467.
McGilvray WD, Wooten H, Rakhshandeh AR, Petry A, Rakhshandeh A. Immune system stimulation increases dietary threonine requirements for protein deposition in growing pigs. J Anim Sci. 2019;97(2):735-44. http://doi.org/10.1093/jas/sky468. PMid:30541080.
Melvin P, Weinstein MD. Methods for dilution antimicrobial susceptibility tests for bacteria that Grow Aerobically Clinical and Laboratory Standard Institute. 11th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Emran TB, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q. 2022;42(1):68-94. http://doi.org/10.1080/01652176.2022.2073399. PMid:35491930.
Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Ménard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Brodkorb A. A standardised static in vitro digestion method suitable for food: an international consensus. Food Funct. 2014;5(6):1113-24. http://doi.org/10.1039/C3FO60702J.
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346-53. http://doi.org/10.1088/0957-4484/16/10/059. PMid:20818017.
National Research Council. Nutrient requirements of swine. Washington, D.C.: NRC; 2012.
Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827-40. http://doi.org/10.1211/0022357023691. PMid:15233860.
Pedersen KS, Toft N. Intra-and inter-observer agreement when using a descriptive classification scale for clinical assessment of faecal consistency in growing pigs. Prev Vet Med. 2011;98(4):288-91. http://doi.org/10.1016/j.prevetmed.2010.11.016. PMid:21185096.
Pineda L, Chwalibog A, Sawosz E, Lauridsen C, Engberg R, Elnif J, Hotowy A, Sawosz F, Gao Y, Ali A, Moghaddam HS. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr. 2012;66(5):416-29. http://doi.org/10.1080/1745039X.2012.710081. PMid:22889095.
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83. http://doi.org/10.1016/j.biotechadv.2008.09.002. PMid:18854209.
Rolim WR, Pelegrino MT, Araújo BL, Ferraz LS, Costa FN, Bernardes JS, Rodrigues T, Brocchi M, Seabra AB. Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization. cytotoxicity evaluation and antibacterial activity. Appl Surf Sci. 2019;463:66-74. http://doi.org/10.1016/j.apsusc.2018.08.203.
Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 2016;21(7):836. http://doi.org/10.3390/molecules21070836. PMid:27355939.
Saleh AA, El-Magd MA. Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environ Sci Pollut Res Int. 2018;25(27):27031-8. http://doi.org/10.1007/s11356-018-2730-7. PMid:30014368.
Salem HM, Ismael E, Shaalan M. Evaluation of the effects of silver nanoparticles against experimentally induced necrotic enteritis in broiler chickens. Int J Nanomedicine. 2021;16:6783-96. http://doi.org/10.2147/IJN.S319708. PMid:34675507.
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177-82. http://doi.org/10.1016/j.jcis.2004.02.012. PMid:15158396.
SAS Institute Inc. SAS® user’s guide, version 8.1. Cary: SAS Institute Inc.; 2009.
Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem Mater. 2002;14(11):4736-45. http://doi.org/10.1021/cm020587b.
Susewind M, Schilmann A-M, Heim J, Henkel A, Link T, Fischer K, Strand D, Kolb U, Tahir MN, Brieger J, Tremel W. Silica-coated Au@ZnO Janus particles and their stability in epithelial cells. J Mater Chem B Mater Biol Med. 2015;3(9):1813-22. http://doi.org/10.1039/C4TB02017K.
Tang X, Xiong K, Fang R, Li M. Weaning stress and intestinal health of piglets: a review. Front Immunol. 2022;13:1042778. http://doi.org/10.3389/fimmu.2022.1042778. PMid:36505434.
Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163-75. http://doi.org/10.1038/nprot.2007.521. PMid:18274517.
Yang L, Zhang B, Yi J, Liang J, Liu Y, Zhang LM. Preparation, characterization, and properties of amylose‐ibuprofen inclusion complexes. Stärke. 2013;65(7-8):593-602. http://doi.org/10.1002/star.201200161.
Zaoui Y, Belanche A, Ben-Jeddou K, Jiménez MS, Fondevila G, Fondevila M. Effect of the dietary administration pattern of silver nanoparticles on growth performance, biodiversity of digestive microbiota and tissue retention in broiler chickens. Anim Feed Sci Technol. 2024;309:115888. http://doi.org/10.1016/j.anifeedsci.2024.115888.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Brazilian Journal of Veterinary Research and Animal Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal content is authorized under the Creative Commons BY-NC-SA license (summary of the license: https://
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2020/03646-2;2020/05316-0;2020/11016-9;2020/00766-7;2021/00738-6;2021/08217-5;2022/00208-0;2022/08618-2;2022/07694-7 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 303750/2021-9