Using the CAL3QHC and I-Tree Canopy for air quality assessment in Aracaju: estimates of the concentrations of PM10 in roadways of intensive traffic of cars
DOI:
https://doi.org/10.11606/issn.2179-0892.geousp.2018.139515Keywords:
Air pollution, Air Quality, CAL3QHC, I-Tree Canopy, AracajuAbstract
Emissions of pollutants from high-traffic density have become a potential source of air pollution in cities. Based on simulations with the atmospheric dispersion model (CAL3QHC), concentrations of MP10 maximum up to 120 μg m-3in the central area of Aracaju were found, which violates the national standards and, therefore, with possible harmful effects on human health. It has been shown that the reduction of 60% volume of automobile in the roadways congested can reduce the concentrations of MP10 up to 70 μg m-3as well as the trees increasing of 9% can remove 16.8 kg annual MP10 with the economic benefit of R$ 390.00, using the I-Tree Canopy tool. The simulated results can be an important source of support for policies and practices in the implementing denser air quality monitoring in the city.
Downloads
References
ANDRADE, M. F.; MIRANDA, R. M.; FORNARO, A.; KERR, A.; OYAMA, B.; ANDRÉ, P. A.; SALDIVA, P. H. N. Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere & Health, v. 5, n. 1, p. 79-88, 2012.
ANJOS, M. W. B. Orientações climáticas para o planejamento urbano numa cidade costeira do nordeste brasileiro: Aracaju-SE. Tese (Doutorado em Geografia Física) – Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Lisboa, 2017.
ANJOS, M. W. B. Ambiente urbano: contrastes térmicos e higrométricos espaciais em Aracaju-SE (Brasil). Dissertação (Mestrado em Geografia Física) – Faculdade de Letras, Universidade de Coimbra, Coimbra, 2012.
ATKINSON, R. W.; ANDERSON, H. R.; SUNYER, J.; AYRES, J.; BACCINI, M.; VONK, J. M.; BOUMGHAR, A.; FORASTIERI, F.; FORSBERG, B.; TOULOUMI, G.; SCHWARTZ, J.; KATSOUYANNI, K. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. American Journal of Respiratory and Critical Care Medicine, v. 164, n. 10-I, p. 1860-1866, 2001.
BENSON, P. E. A review of the development and application of the CALINE3 and 4 models. Atmospheric Environment. Part B, Urban Atmosphere, v. 26, n. 3, p. 379-390, 1992.
BENSON, P. E. A Dispersion Model for Prediciting Air Pollutant Concentrations near Roadways. FHWA/CA/TL-84/15–California Department of Transportation, Sacramento, 1989.
BHATIA, R.; RIVARD, T. Assessment and Mitigation of Air Pollutant Health Effects from Intra-urban Roadways: Guidance for Land Use Planning and Environmental Review. Draft, Program on Health, Equity, Sustainability, Occupational. Environmental Health Section. Department of Public Health. City and County of San Francisco, 2008.
BRIANT, R.; SEIGNEUR, C.; GADRAT, M.; BUGAJNY, C. Evaluation of roadway Gaussian plume models with large-scale measurement campaigns. Geoscientific Model Development, v. 6, n. 2, p. 445-456, 2013.
BRUNEKREEF, B.; JANSSEN, N. A.; HARTOG, J.; HARSSEMA, H.; KNAPE, M.; VAN VLIET, P. Air Pollution from Truck Traffic and Lung Function in Children Living near Motorways. Epidemiology, v. 8, n. 3, p. 298-303, 1997.
CALTRANS. CALIFORNIA DEPARTMENT OF TRANSPORTATION. CALINE4: A dispersion model for predicting air pollutant concentrations near roadways. CA: Division of New Technology and Research, 1989.
CHOW, J. C.; WATSON, J. G.; MAUDERLY, J. L.; COSTA, D. L.; WYZGA, R. E.; VEDAL, S.; HIDY, G. M.; ALTSHULER, S. L.; MARRACK, D.; HEUSS, J. M.; WOLFF, G. T.; POPE, C. A.; DOCKERY, D. W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association, v. 56, n. 10, p. 1368-1380, 2006.
CETESB. COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL. Relatório de Qualidade do Ar no Estado de São Paulo 2007. São Paulo: Companhia de Tecnologia de Saneamento Ambiental, 2008.
COELHO, M. C.; FARIAS, T. L.; ROUPHAIL, N. M. Impact of Speed Control Traffic Signals on Pollutant Emissions. Transportation Research, v.10, n. 3, p. 323-340, 2005a.
COELHO, M. C.; FARIAS, T. L.; ROUPHAIL, N. M. A methodology for modelling and measuring traffic and emission performance of speed control traffic signals. Atmospheric Environment, v. 39, n. 13, p. 2367-2376, 2005b.
DE COENSEL, B.; CAN, A.; DEGRAEUWE, B.; DE VLIEGER, I.; BOTTELDOOREN, D. Effects of traffic signal coordination on noise and air pollutant emissions. Environmental Modelling & Software, v. 35, p. 74-83, 2012.
DETRAN. DEPARTAMENTO NACIONAL DE TRÂNSITO (Sergipe). Disponível em: http://www.detran.se.gov.br/novo_inicio.asp. Acesso em: 2 jan. 2018.
DOCKERY, D. W.; POPE, C. A. Acute Respiratory Effects of Particulate Air Pollution. Annual Review of Public Health, v. 15, n. 1, p. 107-132, 1994.
ELEN, B.; PETERS, J.; POPPEL, M.; BLEUX, N.; THEUNIS, J.; REGGENTE, M.; STANDAERT, A. The Aeroflex: a bicycle for mobile air quality measurements. Sensors. v. 13, n. 1, p. 221-40, 2013.
EPA. US Environmental Protection Agency. User’s Guide to PART5: A Program for Calculating Particulate Emissions from Motor Vehicles. US EPA. Ann Arbor. Michigan: EPA-AAAQAB-94-02, 1998.
EPA. US Environmental Protection Agency. CAL3QHC Version 2.0 a Modeling Methodology for Predicting Pollutant Concentrations near Roadway Intersections. EPA-454/R-92-005. US Environmental Protection Agency. Office of Air Quality Standsards. Reserach Triangle Park, NC, 1992.
ESCOBEDO, F.; NOWAK, D. Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, v. 90, n. 3-4, p. 102-110, 2009.
FENGER, J. Urban air quality. Atmospheric Environment, v. 33, n. 29, p. 4877-4900, 1999.
GAL, T.; UNGER J. Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, v. 44, p. 198-206, 2009.
GOKHALE, S.; RAOKHANDE, N. Performance evaluation of air quality models for predicting PM10 and PM2.5 concentrations at urban traffic intersection during winter period. Science of the Total Environment, v. 394, n. 1, p. 9-24, 2008.
GOUVEIA, N.; FREITAS, C. U.; MARTINS, L. C.; MARCILIO, I. O. Hospitalizações por causas respiratórias e cardiovasculares associadas à contaminação atmosférica no município de São Paulo, Brasil. Cadernos de Saúde Pública, v. 22, n. 12, p. 2669-2677, 2006.
GURJAR, B. R.; BUTLER, T. M.; LAWRENCE, M. G.; LELIEVELD, J. Evaluation of emissions and air quality in megacities. Atmospheric Environment, v. 42, n. 7, p. 1593-1606, 2008.
GUTTIKUNDA, S. K.; RAHUL, G. Health Impacts of Particulate Pollution in a Megacity-Delhi, India. Environmental DeveloMPent, v. 6, n. 1, p. 8-20, 2013.
IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. População estimada 2016. Disponível em: http://cidades.ibge.gov.br/xtras/perfil.php?lang=codmun=280030 search=sergipe|aracaju. Acesso em: 6 mar. 2017.
I-TREE CANOPY. Disponível em: https://canopy.itreetools.org/resources/iTree_Canopy_Methodology.pdf. Acesso em: 2 jan. 2018.
JACOBS, B.; MIKHAILOVIH, N.; DELANEY, C. Benchmarking Australia’s Urban Tree Canopy: An i-Tree Assessment, prepared for Horticulture Australia Limited by the Institute for Sustainable Futures. University of Technology Sydney, 2014.
JERRETT, M.; ARAIN, A.; KANAROGLOU, P.; BECKERMAN, B.; POTOGLOU, D.; SAHSUVAROGLU, T.; MORRISON, J.; GIOVIS C. et al. A review and evaluation of intraurban air pollution exposure models. Journal of Exposure Analysis and Environmental Epidemiology, v. 15, n. 2, p. 185-204, 2005.
LAWRENCE, M. G.; BUTLER, T. M.; STEINKAMP, J.; GURJAR, B. R.; LELIEVELD, J. Regional pollution potentials of megacities and other major population centers. Atmospheric Chemistry and Physics Discussions, v. 7, n. 14, p. 3969-3987, 2007.
LIMA, E. P.; DEMARCHI, S. H.; GIMENES, M. L. Uso do modelo de dispersão CAL3QHC na estimação da dispersão de CO na região central de Maringá, Estado do Paraná. Acta Scientiarum – Technology, v. 32, n. 3, p. 261-269, 2010.
LOPES, S. S. Clima e ordenamento do território no Funchal. Tese (Doutorado em Geografia Física) –Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Lisboa, 2015. Disponível em: http://hdl.handle.net/10451/22719. Acesso em: 5 mar. 2017.
MCCONNELL, R.; BERHANE, K.; YAO, L.; JERRETT, M.; LURMANN, F.; GILLILAND, F.; KÜNZLI, N.; GAUDERMAN, J.; AVOL, E.; THOMAS, D.; PETERS, J. Traffic, susceptibility, and childhood asthma. Environmental Health Perspectives, v. 114, n. 5, p. 766-772, 2006.
MCPHERSON, E. G.; SIMPSON, J. R.; XIAO, Q.; WU, C. Million trees Los Angeles canopy cover and benefit assessment. Landscape Urban Planning, v. 99, n. 1, p. 40-50, 2011.
MILLS, G.; ANJOS, M. W. B.; BRENNAM, M.; WILLIAMS, J.; MCALEAVEY, C.; NINGAL, T. The green “signature” of Irish cities: an examination of the ecosystem services provided by trees using I-Tree Canopy software. Irish Geography, v. 48, n. 2, p. 62-77, 2015.
MIRANDA, R. M.; ANDRADE, M. F.; FORNARO, A.; ASTOLFO, R.; ANDRÉ, P. A.; SALDIVA, P. H. N. Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere & Health, v. 5, n. 1, p. 63-77, 2012.
MISHRA, V. K.; PADMANABHAMUTRY, B. Performance evaluation of CALINE3, CAL3QHC and PART5 in predicting lead concentration in the atmosphere over Delhi. Atmospheric Environment, v. 37, n. 22, p. 3077-3089, 2003.
MOHAN, M.; SIDDIQUI, T. A. Analysis of various schemes for the estimation of atmospheric stability classification. Atmospheric Environment, v. 32, n. 21. p. 3775-3781, 1998.
NEWMAN, N. C.; RYAN, P. H.; HUANG, B.; BECK, A. F.; SAUERS, H. S.; KAHN, R. S. Traffic-related air pollution and asthma hospital readmission in children: A longitudinal cohort study. Journal of Pediatrics, v. 164, n. 6, p. 1396-1402, 2014.
NOWAK, D. J.; HIRABAYASHI, S.; BODINE, A.; GREENFIELD, E. Tree and forest effects on air quality and human health in the United States. Environmental Pollution, v. 193, p. 119-129, 2014.
NOWAK, D. J.; HOEHN, R. E.; CRANE, D. E.; STEVENS, J. C.; FISHER, C. L. Assessing urban forest effects and values, Chicago’s urban forest. USDA Forest Service, Radnor, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, 2010.
NOWAK, D. J.; CRANE, D. E.; STEVENS, J. C. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, v. 4, n. 3-4, p. 115-123, 2006.
NOWAK, D. J.; CRANE, D. E.; DWYER, J. F. Compensatory value of urban trees in the United States. Journal of Aboriculture, v. 28, n. 4, p. 194-199, 2002.
OLMO, N. R. S.; SALDIVA, P. H. N.; BRAGA, A. L. F.; LIN, C. A.; SANTOS, U. P.; PEREIRA, L. A. A. A review of low-level air pollution and adverse effects on human health: implications for epidemiological studies and public policy. Clinics, São Paulo, v. 66, n. 4, p. 681-690, 2011.
OSTRO, B.; BROADWIN, R.; GREEN, S.; FENG, W. Y.; LIPSETT, M. Fine particulate air pollution and mortality in nine California counties: results from Calfine. Environmental Health Perspectives, v. 114, n. 1, p. 29-33, 2006.
PAPANASTASIOU, D. K.; MELAS, D. Climatology and impact on air quality of sea breeze in an urban coastal environment. International Journal of Climatology, v. 29, n. 2, p. 305-315, 2009.
PETERS, J. Monitoring PM10 and Ultrafine Particles in Urban Environments Using Mobile Measurements. Aerosol and Air Quality Research, v.13, p. 509-522, 2013.
POPE, C. A.; THUN, M. J.; NAMBOODIRI, M. M.; DOCKERY, D. W.; EVANS, J. S.; SPEIZER, F. E.; HEATH JR., C. W. Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of Adults. American Journals of Respiratory Critical Care Medicine, v. 151, p. 669-674, 1995.
POPPEL, M.; PETERS, J.; BLEUX, N. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environmental Pollution, v. 183, p. 224-33, 2013.
RICHARDSON, J. J.; MOSKAL, L. M. Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban Forestry & Urban Greening, v. 13, p. 152-157, 2014.
ROSS, Z.; JERRETT, M.; ITO, K.; TEMPALSKI, B.; THURSTON, G. D. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment, v. 41, n. 11, p. 2255-2269, 2007.
SALDIVA, P. H. N.; LICHTENFELS, A. J.; PAIVA, P. S.; BARONE, I. A.; MARTINS, M. A.; MASSAD, E.; PEREIRA, J. C.; XAVIER, V. P.; SINGER, J. M.; BÖHM, G. M. Association between Air Pollution and Mortality Due to Respiratory Diseases in Children in São Paulo, Brazil: A Preliminary Report. Environmental Research, v. 65, n. 2, p. 218-225, 1994.
SAMET, J. M.; DOMINICI, F.; CURRIERO, F. C.; COURSAC, I.; ZEGER, S. L. Fine Particulate Air Pollution and Mortality in 20 U.S. Cities, 1987-1994. New England Journal of Medicine, v. 343, n. 24, p. 1742-1749, 2000.
SÁNCHEZ-CCOYLLO, O. R.; YNOUE, R. Y.; MARTINS, L. D.; ASTOLFO, R.; MIRANDA, R. M.; FREITAS, E. D.; BORGES, A. S.; FORNARO, A.; FREITAS, H.; MOREIRA, A.; ANDRADE, M. F. Vehicular particulate matter emissions in road tunnels in São Paulo, Brazil. Environmental Monitoring and Assessment, v. 149, n. 1-4, p. 241-249, 2009.
TARGINO, A. C.; GIBSON, M. D.; KRECL, P.; RODRIGUES, M. V. C.; SANTOS, M. M.; CORRÊA, M. P. Hotspots of black carbon and PM 2.5 in an urban area and relationships to traffic characteristics. Environmental Pollution, v. 218, p. 475-486, 2016.
TAVARES, F. V. F.; BARRETO, A. A.; DUTRA, E. G.; JACOMINO, V. M. F. Estudo do processo de dispersão de emissões veiculares em uma microrregião de Belo Horizonte (MG) utilizando simulação numérica. Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 15, n. 4, p. 315-324, 2010.
VENN, A. J.; LEWIS, S. A.; COOPER, M.; HUBBARD, R.; BRITTON, J. Living near a main road and the risk of wheezing illness in children. American Journal of Respiratory and Critical Care Medicine, v. 164, n. 12, p. 2177-2180, 2002.
WHO. WORLD HEALTH ORGANIZATION. WHO’s Urban Ambient Air Pollution database – Update 2016 (version 0.2). Disponível em: http://www.who.int/phe/health_topics/outdoorair/databases/AAP_database_summary_results_2016_v02.pdf. Acesso em: 3 mar 2017.
WHO. WORLD HEALTH ORGANIZATION. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide. Report on a WHO Working Group Bonn. Bonn: Jan. 2003.
YAN, J.; LIN, L.; ZHOU, W.; MA, K.; PICKETT, S. T. A. A novel approach for quantifying particulate matter distribution on leaf surface by combining SEM and object-based image analysis. Remote Sensing of Environment, v. 173, p. 156-161, 2016.
YURA, E. A.; KEAT, T.; NEIMEIER, D. Using Caline dispersion to assess vehicular PM2.5 emissions. Atmospheric Environment, v. 41, n. 38, p. 8747-8757, 2007.
ZAMBONINI, F. Estimativa das emissões de monóxido de carbono por veículos automotivos na cidade de Campinas-SP utilizando o modelo CAL3QHCR. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Ambiental) – Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro, 2012. Disponível em: http://hdl.handle.net/11449/121800. Acesso em: 6 out. 2017.
ZHOU, Y.; LEVY, J. I. Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis. BMC Public Health, v. 89, p. 1-11, 2007.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Max Anjos, António Lopes, Elis Alves

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors maintain copyright and grant the magazine the right to first publication, with the work with a license to use the CC-BY attribution, which allows to distribute, remix, adapt and create based on your work, provided that the due copyright, in the manner specified by CS.
- Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any time before or during the editorial process, as this can generate productive changes, as well as increase the impact and citation of published work (See The Effect of Open Access).

