Algorithm for multi-objective evolutionary analysis in thermoenergetic simulations

Authors

  • Rodrigo Karini Leitzke Universidade Federal de Pelotas https://orcid.org/0000-0002-6752-1025
  • Eduardo Grala da Cunha Universidade Federal de Pelotas
  • Thalita dos Santos Maciel Universidade Federal de Pelotas
  • Fernanda Maria Doors Dembinski Universidade Federal de Pelotas
  • Isabela Bulbolz Prestes Universidade Federal de Pelotas

DOI:

https://doi.org/10.11606/gtp.v16i1.164048

Keywords:

optimization, computational simulation, Multi-objective analysis, dwelling

Abstract

Electricity consumption and low thermal comfort in social interest housing (SIH) in southern Brazil are directly related with the low investment to define the materials that make up the envelopes. Through computer simulation, it is possible to evaluate different configurations of a SIH using algorithmic solutions, such as the evolutionary multi-objective, which test different combinations to improve the performance of two or more objective conditions. Aiming at reducing the electricity use intensity and thermal discomfort, this work proposes the presentation of two multiobjective evolutionary algorithms to change the values ​​to be assigned for thermal transmittance of the external walls, the floor and the roof, as well as the solar orientation and the solar absorptions of the outer walls and the roof, with different pre-established values limits. From the analysis of the results obtained in the 10-generation simulation using the EnergyPlus software for the city of Pelotas-RS for each of the algorithms, it was observed that in the best case a thermal comfort level for the occupied hours above 79% was identified. As well as an energy use intensity (EUI) of less than 32 kWh/(m².year). In addition to these results, the discussion presents alternatives for defining the thermoenergetic simulation strategies of large input sets.

Downloads

Download data is not yet available.

Author Biographies

  • Rodrigo Karini Leitzke, Universidade Federal de Pelotas

    Mestrando no Programa de Pós-graduação em Arquitetura e Urbanismo (PROGRAU/UFPel), é Bacharel em Ciência da Computação pela Universidade Federal de Pelotas, atuou durante três anos como bolsista de iniciação científica (CNPq) no Laboratório de Conforto e Eficiência Energética (LABCEE). Atualmente, colabora nos grupos de pesquisa Qualidade do Lugar e Paisagem da UFRJ e Tecnologia e gestão do ambiente construído da UFPel, em trabalhos com a temática do conforto térmico, eficiência energética e soluções computacionais para parametrizar e automatizar o processo de simulação termoenergética a partir do uso de ferramentas de Inteligência Artificia

  • Thalita dos Santos Maciel, Universidade Federal de Pelotas

    Arquiteta e Urbanista pela Universidade Federal de Pelotas (2018). Mestranda em Conforto e Sustentabilidade do Ambiente Construído pelo Programa de Pós Graduação em Arquitetura e Urbanismo (PROGRAU/UFPEL). Atuou durante dois anos como bolsista de iniciação científica pela Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) no Laboratório de Conforto e Eficiência Energética (LABCEE). Atualmente é colaboradora nos grupos de pesquisa Tecnologia e Gestão do Ambiente Construído (UFPEL) e Qualidade do Lugar e Paisagem (UFRJ). Possui experiência em Simulações Computacionais de Conforto e Eficiência Energética.

  • Fernanda Maria Doors Dembinski, Universidade Federal de Pelotas

    Graduada em Arquitetura e Urbanismo pela Universidade Federal da Fronteira Sul, Campus Erechim /RS. Mestranda no PROGRAU.

  • Isabela Bulbolz Prestes, Universidade Federal de Pelotas

    Arquiteta e Urbanista graduada pela Universidade Federal de Pelotas. De 2014 a 2015, atuou como bolsista no LABCEE (Laboratório de Conforto e Eficiência Energética - UFPEL). Entre setembro de 2015 a julho de 2016 foi bolsista no exterior pelo programa Ciências sem Fronteiras/ CAPES, no Politécnico de Milão, na Itália. Em 2017 participou da pesquisa Place-Making with Older People: Towards Age Friendly Communities

References

ASHRAE. Standard 55-2013: Thermal environmental conditions for human occupancy. Atlanta, 2013.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15.220: Desempenho Térmico de Edificações – Parte 2: Métodos de cálculos da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2005.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15.575: Edificações Habitacionais – Desempenho. Rio de Janeiro, 2013.
BRASIL. Lei nº 11.977, de 07 de julho de 2009. Dispõe sobre o Programa Minha Casa, Minha Vida – PMCMV e a regularização fundiária de assentamentos localizados em áreas urbanas. Brasília, DF.
BRE, F.; FACHINOTTI, V. D. A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings. Energy and Buildings, v. 154, p. 283-294, Ago. 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.08.002. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0378778817318042>. Acesso em: 15 jun. 2019.
CALAFIORE, G. et al. APSEplus: a MATLAB toolbox for parametric energy simulation of reference buildings. In: 6th INTERNATIONAL CONFERENCE ON SOFTWARE AND COMPUTER APPLICATIONS, Bangkok, 2017. Proceedings [...]. ACM Digital Library, 2017. p. 267-271.
CARVALHO, M. T. M.; SPOSTO, R. M. Metodologia para avaliação da sustentabilidade de habitações de interesse social com foco no projeto. Ambiente Construído, v. 12, n. 1, p. 207-225, Mar. 2012. DOI: https://doi.org/10.1590/S1678-86212012000100014. Disponível em: <http://www.scielo.br/scielo.php?pid=S1678-86212012000100014&script=sci_arttext>. Acesso em: 15 jun. 2019.
COAKLEY, D.; RAFTERY, P.; KEANE, M. A review of methods to match building energy simulation models to measured data. Renewable and sustainable energy reviews, v. 37, p. 123-141, Mai. 2014. DOI: https://doi.org/10.1016/j.rser.2014.05.007. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S1364032114003232>. Acesso em: 21 jun. 2019.
COELLO, C. A.; LAMONT, G. B.; VAN VELDHUIZEN, D. A. Evolutionary algorithms for solving multi-objective problems. 5 ed. New York: Springer, 2007.
CORREIA, L. A.; ROMERO, ROMERO, M. A. B. Conforto Ambiental e suas relações subjetivas: análise ambiental integrada na Habitação de Interesse Social. In: 1° SIMPÓSIO BRASILEIRO DE QUALIDADE DO PROJETO NO AMBIENTE CONSTRUÍDO, Rio de Janeiro, 2011. Anais [...]. Programa de Pós-Graduação em Arquitetura da UFRJ, PROARQ, 2011. p. 265-276.
DAHLAN, N. Y.; ARIS, A. A. M. Optimizing Energy Baseline for Medium Size Office Using Hybrid EnergyPlus-Evolutionary Programming (EP). Journal of Telecommunication, Electronic and Computer Engineering, v. 10, n. 1-4, p. 59-65, 2018. Disponível em: <https://journal.utem.edu.my/index.php/jtec/article/view/3576>. Acesso em: 27. jun. 2019.
DALBEM, R.; CUNHA, E. G. ; RHEINGANTZ, P. A. ; VICENTE, R. ; SILVA, A. C. S. B. . Atender às normas de desempenho é indicativo de conforto térmico na edificação de uso habitacional?. Arquitextos, São Paulo, v. 211, n. 03, Dez. 2017. Disponível em: <https://www.vitruvius.com.br/revistas/read/arquitextos/18.211/6828>. Acesso em: 14 ago. 2019.
DALBEM, R. ; CUNHA, E. G. da ; VICENTE, R. ; FIGUEIREDO, A. ; OLIVEIRA, R. ; SILVA, A. C. S. B. . Optimization of a social housing for south of Brazil: From basic performance standard to passive house concept. ENERGY, v. 167, p. 1278-1296, Jan. 2019. DOI: https://doi.org/10.1016/j.energy.2018.11.053. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0360544218322576>. Acesso em: 14 ago. 2019.
DEB, K. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons, 2001.
DEB, K.; et. al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, v. 6, n. 2, p. 182-197, Ago. 2002. DOI: 10.1109/4235.996017. Disponível em: <https://ieeexplore.ieee.org/document/996017>. Acesso em: 15 jun. 2019
DELGARM, N. et al. Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Applied energy, v. 170, p. 293-303, Mai. 2016. DOI: https://doi.org/10.1016/j.apenergy.2016.02.141. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S030626191630304X>. Acesso em: 23 ago. 2019.
FADAEE, M.; RADZI M. A. M. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and Sustainable Energy Reviews. v. 16, n. 5, p. 3364-3369. Jun. 2012. DOI: https://doi.org/10.1016/j.rser.2012.02.071. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S1364032112001669>. Acesso em: 19 jun. 2020.
FIGUEIREDO, A.; KÄMPF, J.; VICENTE, R. Passive house optimization for Portugal: Overheating evaluation and energy performance. Energy and Buildings, v. 118, p. 181-196, Abr. 2016. DOI: https://doi.org/10.1016/j.enbuild.2016.02.034. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0378778816300925>. Acesso em: 23 ago. 2019.
FONSECA, L. P. G. et al. Otimização multiobjetivo das dimensões dos ambientes de uma residência unifamiliar baseada em simulação energética e estrutural. Ambiente Construído, v. 17, n. 1, p. 267-288, Mar. 2017. DOI: http://dx.doi.org/10.1590/s1678-86212017000100135. Disponível em: <http://www.scielo.br/scielo.php?pid=S1678-86212017000100267&script=sci_abstract&tlng=pt>. Acesso em: 15 jun. 2019.
INMETRO. Regulamento Técnico da Qualidade para o Nível de Eficiência Energética Edificações Residenciais. Portaria n.º 18, de 16 de janeiro de 2012. Disponível em: <http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC001788.pdf>. Acesso em: 20 abr. 2019.
LEITZKE, R. K. Abordagem utilizando algoritmos genéticos multi-objetivo para avaliar uma edificação de habitação de interesse social (HIS). Abr. 2019, Disponível em: <https://github.com/rodrigokl/AGMO_HIS>. Acesso em: 26 ago. 2019.
LEITZKE, R. K. et al. Optimization of the Traditional Method for Creating a Weather Simulation File: The Pelotas.epw Case. Journal of Civil Engineering and Architecture, v. 12, p. 741-756, 2018. DOI: 10.17265/1934-7359/2018.10.006. Disponível em: <http://www.davidpublisher.org/index.php/Home/Article/index?id=37849.html>. Acesso em: 10 ago. 2019.
MIETTINEN, K. Nonlinear multiobjective optimization. Berlim: Springer Science & Business Media, 2012.
OHTA, Y.; SATO, H. Evolutionary multi-objective air-conditioning schedule optimization for office buildings. In: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, 2018, Japão. Proceedings [...]. New York: Association for Computing Machinery, p. 296-297.
OLIVEIRA, Liader Silva. Avaliação dos limites das propriedades térmicas dos fechamentos opacos da NBR 15220-3, para habitações de interesse social, da Zona Bioclimática 2. 2012. 168f. Dissertação (Mestrado em Arquitetura) – Faculdade de Arquitetura e Urbanismo, Universidade Federal de Pelotas, 2012. Disponível em: <https://wp.ufpel.edu.br/prograu/dissertacoes-conforto-e-sustentabilidade-do-ambiente-construido/>. Acesso em: 31 mar. 2020.
PHILIP, S.; TRAN, T.; TANJUATCO, L. eppy: scripting language for EnergyPlus. v.0.5.52, Out. 2019, Disponível em: <https://pypi.org/project/eppy/>. Acesso em: 04 jun. 2019.
ROLNIK, R. et. al. O Programa Minha Casa Minha Vida nas regiões metropolitanas de São Paulo e Campinas: aspectos socioespaciais e segregação. Cadernos Metrópole, v. 17, n.33, p. 127-154, Mai. 2015. DOI: https://doi.org/10.1590/2236-9996.2015-3306. Disponível em: <https://revistas.pucsp.br/metropole/article/view/18863/16807>. Acesso em: 20. jun. 2019.
SILVA, A. S.; GHISI, E. Análise de sensibilidade global dos parâmetros termofísicos de uma edificação residencial de acordo com o método de simulação do RTQ-R. Ambiente Construído, v. 13, n. 4, p. 135-148, Set. 2013. DOI: https://doi.org/10.1590/S1678-86212013000400010. Disponível em: <http://www.scielo.br/scielo.php?script=sci_abstract&pid=S1678-86212013000400010&lng=en&nrm=iso&tlng=pt>. Acesso em: 10 ago. 2019.
SOBRINHO, Paulo de Souza. Algoritmos genéticos canônico e elitista: uma abordagem comparativa. 2014. 59f. Dissertação (Mestrado em Probabilidade e Estatística) – Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte. Disponível em: <http://bdtd.ibict.br/vufind/Record/UFRN_abe57dc2e59120928aa408d8c6399d86>. Acesso em: 31 mar. 2020.
SOUSA, J. Energy simulation software for buildings: review and comparison. In: INTERNATIONAL WORKSHOP ON INFORMATION TECHNOLOGY FOR ENERGY APPLICATIONS, Lisboa, 2012. Proceedings [...]. Lisboa: Ordem dos Engenheiros, 2012.
U.S. Department of Energy. EnergyPlus™ Version 8.7.0 Documentation - Input Output Reference. EUA, 2018. Disponível em: <https://energyplus.net/sites/default/files/pdfs/pdfs_v8.3.0/InputOutputReference.pdf>. Acesso em: 27 ago. 2019.
VAN VELDHUIZEN, D. A.; LAMONT, G. B. Evolutionary computation and convergence to a pareto front. In: LATE BREAKING PAPERS AT THE GENETIC PROGRAMMING CONFERENCE, 1998. Proceedings [...] Madison: University of Wisconsin,1998. p.221-228.
VIKHAR, P. A. Evolutionary algorithms: A critical review and its future prospects. In: INTERNATIONAL CONFERENCE ON GLOBAL TRENDS IN SIGNAL PROCESSING, INFORMATION, COMPUTING AND COMMUNICATION, 2016, Jalgaon. Proceedings [...]. SSBT's College of Engineering and Technology, Bambhori, 2016. p. 261-265.
YU, W. et al. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, v. 88, p. 135-143, Fev. 2015. DOI: https://doi.org/10.1016/j.enbuild.2014.11.063. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0378778814010305>. Acesso: 15 jun. 2019.
WIJESURIYA, S.; BRANDT, M.; TABARES-VELASCO, P. C. Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate. Applied energy, v. 222, p. 497-514, Jul. 2018. DOI: https://doi.org/10.1016/j.apenergy.2018.03.119. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0306261918304574>. Acesso em: 27 ago. 2019.
ZITZLER, E.; LAUMANNS, M.; THIELE, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, v. 103, 2001. DOI: https://doi.org/10.3929/ethz-a-004284029. Disponível em: <https://www.research-collection.ethz.ch/handle/20.500.11850/145755>. Acesso em: 21 jun. 2019.
ZHANG, Y.; KOROLIJA, I. Performing complex parametric simulations with jEPlus. In: INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY TECHNOLOGIES, 2010, Kandy. Anais [...]. Oxford: Elsevier, 2011. p. 24-27.

Published

2020-12-28

How to Cite

LEITZKE, Rodrigo Karini; CUNHA, Eduardo Grala da; MACIEL, Thalita dos Santos; DEMBINSKI, Fernanda Maria Doors; PRESTES, Isabela Bulbolz. Algorithm for multi-objective evolutionary analysis in thermoenergetic simulations. Gestão & Tecnologia de Projetos (Design Management and Technology), São Carlos, v. 16, n. 1, p. 24–42, 2020. DOI: 10.11606/gtp.v16i1.164048. Disponível em: https://revistas.usp.br/gestaodeprojetos/article/view/164048.. Acesso em: 3 dec. 2024.