Artificial intelligence in assisting building deconstruction: a systematic literature review
DOI:
https://doi.org/10.11606/gtp.v20i1.231590Keywords:
AI, Circular economy, end of life, ICT, BIMAbstract
Building deconstruction can encourage the reuse of materials in new constructions, minimizing costs and reducing environmental degradation while aiming for a circular economy. However, implementing this concept still faces challenges, such as the need to optimize material sorting to reduce the time and cost of the process. In this regard, Artificial Intelligence (AI) can assist the deconstruction process as an efficient tool for improving productivity levels and resource management. Thus, this study proposes a systematic literature review to understand how the combination of AI with digital methodologies and technological tools can overcome barriers encountered in the building deconstruction process, presenting a more practical view of this integration. Thirteen publications were selected, covering the period from 2022 to 2024 and employing the PRISMA methodology. These studies highlighted the prominence of machine learning combined with Building Information Modeling (BIM) in addressing issues in the deconstruction field, particularly regarding material sorting. Specific gaps were identified and analyzed to propose an AI-based approaches aimed at solving critical issues in the deconstruction process, such as the evaluation of material mass.
Downloads
References
ABIOYE, S. O., OYDELE, L. O., AKANBI, L., AJAYI, A., DELGADO, J. M. D., BILAL, M., AKINADE, O. O., AHMED, A.. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, v. 44, dez. 2021, 103299. ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2021.103299.
AKANBI, L. A., OYDELE, L. O., AKINADE, O. O., AJAYI, A., DELGADO, J. M. D., BILAL, M., BELLO, S. A. Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Resources, Conservation and Recycling, v. 129, p. 175-186, fev. 2018, ISSN 0921-3449. Disponível em: https://doi.org/10.1016/j.resconrec.2017.10.026.
ALESSANDRI-BONETTI, M., LIU, H. Y., GIORGINO, R., NGUYEN, V. T., EGRO F. M. The first months of life of ChatGPT and its impact in healthcare: A bibliometric analysis of the current literature. Annals Biomedical Engineering, v. 52, p. 1107–1110, mar. 2024. Disponível em: https://doi.org/10.1007/s10439-023-03325-8
AMARASINGHE, I., HONG, Y., STEWART, RODNEY, A. Visualising a framework for enhancing material circularity in building construction projects: Drivers, barriers, and strategies. Building and Environment, v. 253., fev. 2024, 111359, ISSN 0360-1323. Disponível em: https://doi.org/10.1016/j.buildenv.2024.111359.
BALOGUN, H., ALAKA, H., DEMIR, E., EGWIM, C.N., OLU-AJAYI, R., SULAIMON, I., OSEGHALE, R. Artificial intelligence for deconstruction: Current state, challenges, and opportunities. Automation in Construction, v. 166, out. 2024, 105641, ISSN 0926-5805. Disponível em: https://doi.org/10.1016/j.autcon.2024.105641.
BELLINI, A., ANDERSEN, B., KLUNGSETH, N. J., TADAYON, A. Achieving a circular economy through the effective reuse of construction products: A case study of a residential building. Journal of Cleaner Production, v. 450, abr. 2024, 141753, ISSN 0959-6526. Disponível em: https://doi.org/10.1016/j.jclepro.2024.141753.
BENACHIO, G. L. F., FREITAS, M. D. C. D., TAVARES, S. F. Circular economy in the construction industry: a systematic literature review. Journal of Cleaner Production, v. 260, jul. 2020, 121046. Disponível em: https://doi.org/10.1016/j.jclepro.2020.121046.
BISWAS, H. K., SIM, T. Y., LAU, S. L. Impact of Building Information Modelling and Advanced Technologies in the AEC Industry: A Contemporary Review and Future Directions. Journal of Building Engineering, v. 82, abr. 2024, 108165, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2023.108165.
ÇETIN, S., RAGHU, D., HONIC, M., STRAUB, A., GRUIS, V. Data requirements and availabilities for material passports: A digitally enabled framework for improving the circularity of existing buildings. Sustainable Production and Consumption, v. 40, p. 422-437, set. 2023. Disponível em: https://doi.org/10.1016/j.spc.2023.07.011.
CHEN, J., FU, Y., LU, W., PAN, Y. Augmented reality-enabled human-robot collaboration to balance construction waste sorting efficiency and occupational safety and health. Journal of Environmental Management, v. 348, dez. 2023, 119341, ISSN 0301-4797. Disponível em: https://doi.org/10.1016/j.jenvman.2023.119341.
CHEN, X., HUANG, H., LIU, Y., LI, J., LIU, M. Robot for automatic waste sorting on construction sites. Automation in Construction, v. 141, set. 2022, 104387, ISSN 0926-5805. Disponível em: https://doi.org/10.1016/j.autcon.2022.104387.
CRUZ, A. S., CALDAS, L. R., MENDES, V. M., MENDES, J. C., BASTOS, L. E. G. Multi-objective optimization based on surrogate models for sustainable building design: A systematic literature review. Building and Environment, v. 266, dez. 2024a, 112147, ISSN 0360-1323. Disponível em: https://doi.org/10.1016/j.buildenv.2024.112147.
CRUZ, A. S., MENDES, V. F., MENDES, J. C., CALDAS, L. R., BASTOS, E. G. B. What lies ahead? The future performance of Global South residential buildings amid climate change: a systematic literature review. Journal of Building Engineering, v. 98, dez. 2024b, 111486, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2024.111486.
DEEPIKA, R., ARETI, M., MATHILDE, M., IACOPO, N., ANGELOS, C., CATHERINE, D. W. Enabling component reuse from existing buildings through machine learning, using Google Street View to enhance building databases. POST-CARBON - 27th CAADRIA Conference, Sydney, v. 2, abr. 2022, p. 577-586, Disponível em: https://doi.org/10.52842/conf.caadria.2022.2.577
ELLEN MACARTHUR FOUNDATION. Towards a circular economy: Business rationale for an accelerated transition. Disponível em: https://www.ellenmacarthurfoundation.org/towards-a-circular-economy-business-rationale-for-an-accelerated-transition. Acesso em: 20 de ago. 2024.
EPA (U.S. Environmental Protection Agency). Lifecycle construction resource guide. Atlanta, 2008. 72 p.
FRAGA-LAMAS, P., LOPES, S. I., FERNÁNDEZ-CARAMÉS, T. M. Green IoT and edge AI as key technological enablers for a sustainable digital transition towards a smart circular economy: An industry 5.0 use case. Sensors, v. 21, ago. 2021. Disponível em: https://doi.org/10.3390/s21175745.
GORDON, M., BATALLÉ, A., DE WOLF, C., SOLLAZZO, A., DUBOR, A., WANG, T. Automating building element detection for deconstruction planning and material reuse: A case study. Automation in Construction, v. 146, p. 104697, fev. 2023. Disponível em: https://doi.org/10.1016/j.autcon.2022.104697.
GUERRA, B. C., SHAHI, S., MOLLAEI, A., SKAF, N., WEBER, O., LEITE, F., HAAS, C. Circular economy applications in the construction industry: A global scan of trends and opportunities. Journal of Cleaner Production, v. 324, nov. 2021, 129125, ISSN 0959-6526, Disponível em: https://doi.org/10.1016/j.jclepro.2021.129125.
GUY, B., CIARIMBOLI, N. Design for Disassembly in the Built Environment: a guide to closed-loop design and building. Seattle: City of Seattle, King County, WA, and Resource Venture, Inc., 2007. Prepared by the Hamer Center for Community Design, The Pennsylvania State University. Disponível em: https://www.lifecyclebuilding.org/docs/DfDseattle.pdf
HASSLER, S. C. BAYSAL-GUREL, F. Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy, v. 9, out. 2019. Disponível em: https://doi.org/10.3390/agronomy9100618.
HOPKINSON, P., CHEN, H. M., ZHOU, K., WANG, Y., LAM, D. Recovery and reuse of structural products from end-of-life buildings. Proceedings of the Institution of Civil Engineers– Engineering Sustainability, v. 172 p. 119–128, maio 2019. Disponível em: https://doi.org/10.1680/jensu.18.00007.
HU, X., ZHOU, Y., VANHULLEBUSCH, S., MESTDAGH, R., CUI, Z., LI, J. Smart building demolition and waste management frame with image-to-BIM. Journal of Building Engineering, v. 49, maio 2022, 104058, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2022.104058.
LACOVIDOU, E., PURNELL, P., LIM, M. K. The use of smart technologies in enabling construction components reuse: A viable method or a problem creating solution? Journal of Environmental Management, v. 216, p. 214-223, jun. 2018, ISSN 0301-4797. Disponível em: https://doi.org/10.1016/j.jenvman.2017.04.093.
LIMA, P. R. B., RODRIGUES, C. S., POST, J. M. Integration of BIM and design for deconstruction to improve circular economy of buildings. Journal of Building Engineering, v. 80, dez. 2023, 108015, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2023.108015.
LIU, J., WU, P., JIANG, Y., WANG, X. Explore potential barriers of applying circular economy in construction and demolition waste recycling. Journal of Cleaner Production, v. 326, dez. 2021, 129400, ISSN 0959-6526 . Disponível em: https://doi.org/10.1016/j.jclepro.2021.129400.
MOLLAEI, A., BACHMANN, C., HAAS, C. Assessing the impact of policy tools on building material recovery. Resources, Conservation and Recycling, v. 198, nov. 2023, 107188, ISSN 0921-3449. Disponível em: https://doi.org/10.1016/j.resconrec.2023.107188.
MRAD, C., RIBEIRO, L. F. A review of Europe’s circular economy in the building sector. Sustainability, v. 14, Out. 2022, 14211. Disponível em: https://doi.org/10.3390/su142114211
NASCIMENTO ,C. R. S. de M. et al. O BIM como instrumento para gestão da manutenção e operação de edificações: um panorama atual. Gestão & Tecnologia de Projetos. São Carlos, v. 18, n. 1, ago. 2023. Disponível em: https://doi.org/10.11606/gtp.v18i1.185678
O'GRADY, T., MINUNNO,R., CHONG, H., MORRISON, G. M. Design for disassembly, deconstruction and resilience: A circular economy index for the built environment. Resources, Conservation and Recycling, v. 175, dez. 2021, 105847, ISSN 0921-3449. Disponível em: https://doi.org/10.1016/j.resconrec.2021.105847.
PRASAD, V., ARASHPOUR, M. Optimally leveraging depth features to enhance segmentation of recyclables from cluttered construction and demolition waste streams. Journal of Environmental Management, v. 354, mar. 2024, 120313, ISSN 0301-4797. Disponível em: https://doi.org/10.1016/j.jenvman.2024.120313.
QUÉHEILLE, E., TAILLANDIER, F., SAIYOURI, N., FERNANDEZ, C. A many-objective optimization model for the end-of-life of buildings. Environment Systems and Decisions, jun. 2024. Disponível em: https://doi.org/10.1007/s10669-024-09984-9.
RICH, E., KNIGHT, K., NAIR, S. B. Artificial intelligence. 3. ed. New Delhi: Tata McGraw-Hill Education Pvt. Ltd., 2010. 585 p.
SACKS, Rafael, EASTMAN, Charles, LEE, Ghang, TEICHOLZ, Paul. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. 3. ed. Hoboken, NJ: Wiley, 2018, 682 p.
SANCHEZ, B., HAAS, C. A novel selective disassembly sequence planning method for adaptive reuse of buildings. Journal of Cleaner Production, v. 183, maio 2018, p. 998-1010, ISSN 0959-6526. Disponível em: https://doi.org/10.1016/j.jclepro.2018.02.201.
SANCHEZ, B., HONIC, M., LEITE, F., HERTHOGS, P., STOUFFS, R. Augmenting materials passports to support disassembly planning based on building information modelling standards. Journal of Building Engineering, v. 90, ago. 2024, 109083, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2024.109083.
SUCCAR, B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, v. 18, n. 3, p. 357-375, maio 2009, ISSN 0926-5805. Disponível em: https://doi.org/10.1016/j.autcon.2008.10.003.
SCHROEDER, H.; LEMKE, M. Sustainability of Earth Building Materials—Environmental Product Declarations as an Instrument of Competition in Building Material Industry. Vitruvio, International journal of Architecture Technology and Sustainability, p. 45-55, dez. 2015. Disponível em: https://doi.org/10.4995/vitruvio-ijats.2015.4474
SETAKI, F., TIMMEREN, A. V. Disruptive technologies for a circular building industry. Building and Environment, v. 223, set. 2022, 109394, ISSN 0360-1323. Disponível em: https://doi.org/10.1016/j.buildenv.2022.109394.
SHON, D.; NOH, B.; BYUN, N. Identification and extracting method of exterior building information on 3D map. Buildings, v. 12, abr. 2022, 452. Disponível em: https://doi.org/10.3390/buildings12040452
SIRIMEWAN, D., BAZLI, M., RAMAN, S., MOHANDES, S. R., KINEBER, A. F., ARASHPOUR, M. Deep learning-based models for environmental management: Recognizing construction, renovation, and demolition waste in-the-wild. Journal of Environmental Management, v. 351, fev. 2024, 119908, ISSN 0301-4797. Disponível em: https://doi.org/10.1016/j.jenvman.2023.119908.
TATIYA, A., ZHAO, D., SYAL, M., BERGHORN, G. H., LAMORE, R. Cost prediction model for building deconstruction in urban areas. Journal of Cleaner Production, v. 195, p. 1572-1580, set. 2018, ISSN 0959-6526. Disponível em: https://doi.org/10.1016/j.jclepro.2017.08.084.
THOMSEN A., SCHULTMANN F., KOHLER, N. Deconstruction, demolition and destruction. Building Research & Information, v. 39, p. 327-332, jun. 2011. Disponível em: https://doi.org/10.1080/09613218.2011.585785.
UNEP (United Nations Environment Programme). Beyond foundations: Mainstreaming sustainable solutions to cut emissions from the buildings sector. Global status report for buildings and construction, 2024. Disponível em: https://www.unep.org/pt-br/resources/relatorios/relatorio-de-status-global-para-edificacoes-e-construcao. Acesso em 15 jul. 2024.
VASCONCELOS, B. M., OLIVEIRA, V. S. Diretrizes para projeto de ambiente construído inclusivo (pessoas com deficiência auditiva): revisão sistemática. Gestão e Tecnologia de Projetos, São Carlos, v.15, n. 2, p.98-112, jun. 2020. Disponível em: http://dx.doi.org/10.11606/gtp.v15i2.162777.
WANG, Q., KIM, M. Applications of 3D point cloud data in the construction industry: A fifteenyear review from 2004 to 2018. Advanced Engineering Informatics, v. 39, p. 306-319, jan. 2019, ISSN 1474-0346. Disponível em: https://doi.org/10.1016/j.aei.2019.02.007.
WEBSTER, M. D., GUMPERTZ, S., COSTELLO, D. T. Designing structural systems for deconstruction: How to extend a new building’s useful life and prevent it from going to waste when the end finally comes. Greenbuild Conference, Atlanta, nov. 2005.
WU, B., MAALEK, R. Renovation or redevelopment: The case of smart decision-support in aging buildings. Smart Cities, v. 6, p. 1922-1936, ago. 2023. Disponível em: https://doi.org/10.3390/smartcities6040089.
YUE, H., WANG, Q., ZHAO, H., ZENG, N., TAN, Y. Deep learning applications for point clouds in the construction industry. Automation in Construction, v. 168, dez. 2024, 105769, ISSN 0926-5805. Disponível em: https://doi.org/10.1016/j.autcon.2024.105769.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Carolina Mendonça de Freitas Mendes de Souza, Bárbara dos Santos Rezende, Alexandre Santana Cruz, Lucas Rosse Caldas

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Notice
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with the article simultaneously licensed under the Creative Commons Attribution License BY NC ND, which allows the sharing of article with acknowledgment of authorship and initial publication in this journal.
- Authors are authorized to take additional contracts separately, for non-exclusive distribution of version of the article published in this journal (e.g. publish in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to publish and distribute their research work online (e.g. in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes, as well as increase the impact and the citation of published article (See O Efeito do Acesso Livre).
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Processo 88887.951259/2024-00 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Processo: 88887.951508/2024-00 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Processo: 88887.687007/2022-00 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers Processo: 402022/2023-8 -
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Grant numbers Processo: 26/200.162/2023 (281990)