Digital Concept Map combined with Augmented Reality as innovative teaching material in teaching Stereoisomerism in undergraduate courses

Authors

DOI:

https://doi.org/10.11606/issn.2525-376X.v9i1p59-73

Keywords:

Concept Maps, Augmented Reality, Organic Chemistry, Visuospatial Skills, Molecular Models

Abstract

Understanding macroscopic phenomena in Chemistry requires the mental visualization of models at the molecular level. Specifically in Organic, the lack of visuospatial skills can jeopardize the acquisition of scientific conceptual knowledge. Based on a cognitivist theoretical framework, this study aimed to evaluate the knowledge gain, usability, disorientation and mental effort of university students (n = 13) during the application of an authorial teaching material: a digital Concept Map combined with Augmented Reality in teaching Stereoisomerism (spatial isomerism). Using a mixed research methodology, it was possible to demonstrate that the material has great potential for application and acceptance in higher education, however, students’ difficulty in mentally manipulating molecular models was clear, even after instruction and use of the teaching resource.

Downloads

Download data is not yet available.

Author Biographies

  • Joana Guilares de Aguiar, Fluminense Federal University

    é Docente de Química da Universidade Federal Fluminense.

  • Genilson Pinheiro de Azevedo, Fluminense Federal University

    é Estudante de Licenciatura em Química - UFF.

  • Lucas Ribeiro de Menezes, Fluminense Federal University

    é Mestrando do Programa de pós-graduação Profissional em Ensino de Ciências da Natureza.

References

AGUIAR, J.G.; CORREIA, P.R.M. Como fazer bons mapas conceituais? Estabelecendo parâmetros de referências e propondo atividades de treinamento. Revista Brasileira de Pesquisa em Educação em Ciências, v. 13, n. 2, 2013, pp. 141-157. Disponível em: <https://periodicos.ufmg.br/index.php/rbpec/article/view/4265/2830>. Acesso em: set. 2024.

AGUIAR, J.G.; CORREIA, P.R.M. Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction. Chemistry Education Research & Practice, v. 17, n. 4, 2016, pp. 756-765. DOI: https://doi.org/10.1039/C6RP00069J.

AGUIAR, J.G.; OLIVEIRA, M.C.; NUNES NETO, A.Y.T.; BELCHIOR, N.Y.G.C. Hipertextos organizados na forma de mapa conceitual ou texto: um estudo comparativo no Ensino de Química. Currículo & Docência, v.. 03, n. 03, 2021, pp. 109-135. Disponível em:<https://periodicos.ufpe.br/revistas/index.php/CD/article/view/249997/40432>. Acesso em: set. 2024.

AINSWORTH S. A conceptual framework for considering learning with multiple representations. Learning and Instruction, v. 16, n. 3, 2006, pp. 183–198. DOI: https://doi.org/10.1016/j.learninstruc.2006.03.001.

AMADIEU, F.; TRICOT, A.; MARINÉ, C. Interaction between prior knowledge and concept-map structure on hypertext comprehension, coherence of reading orders and disorientation. Interacting with Computers, v. 22, n. 2, 2010, pp. 88-97. DOI: https://doi.org/10.1016/j.intcom.2009.07.001.

AUSUBEL, D.P. The acquisition and retention of knowledge: a cognitive view. Dordrecht: Kluwer Academic Publishers, 2000. DOI: https://doi.org/10.1007/978-94-015-9454-7.

AZEVEDO, G.P.; NUNES NETO, A.Y.T.; AGUIAR, J.G. Mapa Conceitual digital aliado à Realidade Aumentada como recurso didático sobre estereoisomeria: um estudo no ensino superior. In XIV ENPEC. Caldas Novas, GO, 2023. Disponível em:

<https://editorarealize.com.br/editora/anais/enpec/2023/TRABALHO_COMPLETO_EV181_MD1_ID1147_TB489_150

pdf>. Acesso em: set. 2024.

BADDELEY, A. Human memory. Boston: Allyn & Bacon, 1998.

BROOKE, J. SUS: A ‘quick and dirty’ usability scale. In: JORDAN, P.W. et al. Usability evaluation in industry, (pp. 189-194). Londres: Taylor & Francis, 1996. Disponível em:<https://digital.ahrq.gov/sites/default/files/docs/survey/systemusabilityscale%2528sus%2529_comp%255B1%255D.pdf>. Acesso em: set. 2024.

CAHTAREVIC, R. Virtuality in architecture: from perspective representation to augmented reality. Facta universitatis series Architecture and Civil Engineering, v. 6, n. 2, 2008, pp. 235-241. DOI: https://doi.org/10.2298/FUACE0802235C.

CASSELMAN, M.D.; EICHLER, J.F.; ATIT, K. Advancing Multimedia Learning for Science: Comparing the Effect of Virtual versus Physical Models on Student Learning about Stereochemistry. Science Education, v. 105, n. 6, 2021, pp. 1285-1314. DOI: https://doi.org/10.1002/sce.21675.

CORREIA, P.R.M.; AGUIAR, J.G. Mapas conceituais no ensino de Ciências: estagnação ou crescimento? Investigações em Ensino de Ciências, v. 27, n. 3, 2022, pp. 198–218. DOI: https://doi.org/10.22600/1518-8795.ienci2022v27n3p198.

CRESWELL, J.W.; CRESWELL J.D. Projeto de pesquisa: métodos qualitativo, quantitativo e misto. 5 ed. Porto Alegre: Grupo A Educação A.S., 2021.

ELFORD, D.; LANCASTER, S.J.; JONES, G.A. Stereoisomers, Not Stereo Enigmas: a Stereochemistry Escape Activity Incorporating Augmented and Immersive Virtual Reality. Journal of Chemical Education, v. 98, n. 5, 2021, pp. 1691-1704. DOI: https://doi.org/10.1021/acs.jchemed.0c01283.

ELFORD, D.; LANCASTER, S.J.; JONES, G.A. Exploring the Effect of Augmented Reality on Cognitive Load, Attitude, Spatial Ability, and Stereochemical Perception. Journal of Science Education and Technology, v. 31, n. 3, 2022, pp. 322-339. DOI: https://doi.org/10.1007/s10956-022-09957-0.

HABIG, S. Who Can Benefit from Augmented Reality in Chemistry? Sex Differences in Solving Stereochemistry Problems Using Augmented Reality. British Journal of Educational Technology, v. 51, n. 3, 2020, pp. 629-644. DOI: https://doi.org/10.1111/bjet.12891.

IUPAC. Nomenclature of Organic Chemistry. Division of Chemical Nomenclature and Structure Representation. Blue Book Essentials, 2020. Disponível em: <https://iupac.org/wp-content/uploads/2021/06/Organic-Brief-Guidebrochure_v1.1_June2021.pdf>. Acesso em: set. 2024.

JOHNSTONE, A.H. Macro-and micro chemistry. School Science Review, v. 64, n. 227, 1982, pp. 377–379.

JOHNSTONE, A.H. Teaching of chemistry – logical or psychological?. Chemistry Education Research and Practice European, v. 1, n. 1, 2000, pp. 9-15. DOI: https://doi.org/10.1039/A9RP90001B.

KIRNER, C.; KIRNER, T.G. Realidade Virtual e Realidade Aumentada Aplicadas à Visualização de Simulações. In: ASIM EL SHEIKH A.E.; AJEELI A.T.A.; ABU-TAIEH, E. Simulation and Modeling: current technologies and applications, pp. 391-419. Hershey: IGI Global, 2008.

LAU, P.N.; CHAN, W.L.; LI, Y. Prototype of a Transition Metal Visualization App for the Learning of Stereochemistry in a General Chemistry Course: Initial Findings and Reflections. Journal of Chemical Education, v. 99, n. 3, 2022, pp. 1167-1175. Disponível em:

<https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.1c01261>. Acesso em: set. 2024.

MAIER, P.; KLINKER, G. Augemented Chemical Reactions: 3D interaction methods for chemistry. International Journal of Online and Biomedical Engineering, v. 9, n. 1, 2013, pp. 80-82. DOI: https://doi.org/10.3991/ijoe.v9iS8.3411.

MISTRY, N.; SINGH R.; RIDLEY, J. A Web-Based Stereochemistry Tool to Improve Students' Ability to Draw Newman Projections and Chair Conformations and Assign "R/S" Labels. Journal of Chemical Education, v. 97, n. 4, 2020, pp. 1157-1161. Disponível em:

<https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.9b00688>. Acesso em: set. 2024.

MORTIMER, E.F.; MACHADO, A.H.; ROMANELLI, L.I. A proposta curricular de química do Estado de Minas Gerais: fundamentos e pressupostos. Química Nova, vol. 23, 2000, pp. 273-283. DOI: https://doi.org/10.1590/S0100-40422000000200022.

NICHELE, A.G.; CANTO, L.Z. Aplicativos para o ensino e aprendizagem de Química Orgânica. Renote, v.16, n. 1, 2018, pp. 1-10. DOI: https://doi.org/10.22456/1679-1916.85994.

NOVAK, J.D. Learning, creating and using knowledge: concept maps as facilitative tools in schools and corporations. 2 ed. Nova Iorque: Routledge, 2010.

PAAS, F.G.W.C. Training strategies for attaining transfer of problem-solving skill in statistics: a cognitiveload approach. Journal of Educational Psychology, v. 84, n. 4, 1992, pp. 429-434. DOI: https://doi.org/10.1037/0022-0663.84.4.429.

PAAS, F.G.W.C.; VAN MERRIENBOER, J.J.G. The efficiency of instructional conditions: an approach to combine mental effort and performance measures. Human Factors, vol. 35, n. 4, 1993, pp. 737–743. DOI: https://doi.org/10.1177/001872089303500412.

QUEIROZ, A.S.; OLIVEIRA, C.M.; REZENDE, F.S. Realidade Aumentada no Ensino da Química: Elaboração e Avaliação de um Novo Recurso Didático. Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação, v. 1, n. 2, 2014. DOI: http://dx.doi.org/10.5281/zenodo.59446.

SANTOS, B.M. Experimentos Virtuais na Área de Química com Realidade Aumentada. (Trabalho de Conclusão de Curso), Faculdade de Ciência da Computação, Universidade Federal do Pampa, Alegrete, RS, Brasil, 2013. Disponível em: <https://dspace.unipampa.edu.br/jspui/bitstream/riu/1567/1/Experimentos%20virtuais%20na%20%C3%A1rea

%20de%20qu%C3%ADmica%20com%20realidade%20aumentada.pdf>. Acesso em: set. 2024.

SCHNEIDER, R. Hypertext narrative and the reader: a view from cognitive theory. European Journal of English Studies, v. 9, n. 2, 2005, pp. 197-208. DOI: https://doi.org/10.1080/13825570500172067.

SOLOMONS G.; FRYHLE C.B. Química Orgânica. 7 ed, vol 1. Rio de Janeiro: LTC, 2000.

SOUZA, V.C.A.; JUSTI, R.E.; FERREIRA, P.F.M. Analogias utilizadas no ensino dos modelos atômicos de Thomson e Böhr: uma análise crítica sobre o que os alunos pensam a partir delas. Revista Investigações em Ensino de Ciências, v. 2, n. 1, 2006, pp. 7-28. Disponível em:

<https://ienci.if.ufrgs.br/index.php/ienci/article/view/500/300>. Acesso em: set. 2024.

SWELLER, J.; AYRES, P.; KALYUGA, S. Cognitive Load Theory. Nova Iorque: Springer, 2011.

Published

2025-08-27

How to Cite

AGUIAR, Joana Guilares de; AZEVEDO, Genilson Pinheiro de; MENEZES, Lucas Ribeiro de. Digital Concept Map combined with Augmented Reality as innovative teaching material in teaching Stereoisomerism in undergraduate courses. Revista de Graduação USP, São Paulo, Brasil, v. 9, n. 1, p. 59–73, 2025. DOI: 10.11606/issn.2525-376X.v9i1p59-73. Disponível em: https://revistas.usp.br/gradmais/article/view/216252. Acesso em: 1 feb. 2026.