Anthropic action affects the cuticular chemical profile of social wasps

Authors

DOI:

https://doi.org/10.11606/1807-0205/2022.62.013

Keywords:

Polistes versicolor, Polybia paulista, Polybia occidentalis, Anthropization, Chemical signature

Abstract

As a result of environmental change by anthropic action, animal species that inhabit these areas may suffer the effects of it on their phenotypes as a consequence of adapting to these conditions. In the case of social wasps, cuticular chemical compounds may be influenced, since these vary depending on genetic and environmental factors. However, few studies have investigated the synanthropic effects over the cuticular surface of social wasps. Therefore, the aim of this study was to investigate how cuticular compounds vary according to the different degrees of human activity and test the hypothesis that cuticular compounds of social wasps are affected by the level of anthropic activity in which their nests are found. Data on the cuticular chemical compounds composition of colonies of 3 species of social wasps were used along with the level of anthropization of their nesting sites in four municipalities in the state of Mato Grosso do Sul, Brazil. From the geographical coordinates of the sampling sites, the percentages of urban construction areas, agriculture, water body, vegetation and exposed land were calculated, and the nesting sites of the colonies were classified as more or less anthropized areas. The chemical profile was determined by extraction of cuticular compounds and analyzed by Gas Chromatography coupled to Mass Spectrometer (GC-MS). The results show that the cuticular chemical composition of the individuals of these species is affected by the level of anthropization in their nesting sites, with a qualitative and quantitative variation that must be tied not only to genetic differences, but, above all, to the local environmental conditions to which their colonies are subjected.

Downloads

Download data is not yet available.

References

Abd El-Ghany, N.M. 2019. Semiochemicals for controlling insect pests. Journal of Plant Protection Research, 59(1): 1-11. https://doi.org/10.24425/jppr.2019.126036.

Bagneres, A.-G.; Lorenzi, M.C.; Dusticier, G.; Turillazzi, S. & Clement, J.L. 1996. Chemical Usurpation of a Nest by Paper Wasp Parasites. Science, 272(5263): 889-892. https://doi.org/10.1126/science.272.5263.889.

Billen, J. 2006. Signal variety and communication in social insects. Proceedings of the Netherlands Entomological Society Meeting, 17: 9-25.

Blomquist, G.J. & Bagnères, A.G. 2010a. Introduction: history and overview of insect hydrocarbons. In: Blomquist & Bagneres (Eds.). Insect Hydrocarbons. Cambridge: Cambridge University Press. 3-18. https://doi.org/10.1017/CBO9780511711909.002.

Blomquist, G.J. & Bagnères, A.G. 2010b Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511711909.

Bonavita-Cougourdan, A.; Theraulaz, G.; Bagnères, A.G.; Roux, M.; Pratte, M.; Provost, E. & Clément, J.L. 1991. Cuticular hydrocarbons, social organization and ovarian development in a polistine wasp: Polistes dominulus christ. Comparative Biochemistry and Physiology – Part B: Biochemistry and Molecular Biology, 100(4): 667-680. https://doi.org/10.1016/0305-0491(91)90272-F.

Bonelli, M.; Lorenzi, M.C.; Christidès, J.-P.; Dupont, S. & Bagnères, A.-G. 2015. Population Diversity in Cuticular Hydrocarbons and mtDNA in a Mountain Social Wasp. Journal of Chemical Ecology, 41(1): 22-31. https://doi.org/10.1007/s10886-014-0531-0.

Brock, R.E.; Cini, A. & Sumner, S. 2021. Ecosystem services provided by aculeate wasps. Biological Reviews, 96(4): 1645-1675. https://doi.org/10.1111/brv.12719.

Brown, W.V.; Spradbery, J.P. & Lacey, M.J. 1991. Changes in the cuticular hydrocarbon composition during development of the social wasp, Vespula germanica (F.) (Hymenoptera: Vespidae). Comparative Biochemistry and Physiology – Part B: Biochemistry and Molecular Biology, 99(3): 553-562. https://doi.org/10.1016/0305-0491(91)90337-D.

Buczkowski, G.; Kumar, R.; Suib, S.L. & Silverman, J. 2005. Diet-related modification of cuticular hydrocarbon profiles of the argentine ant, Linepithema humile, diminishes intercolony aggression. Journal of Chemical Ecology, 31(4): 829-843. https://doi.org/10.1007/s10886-005-3547-7.

Clemente, M.A.; Lange, D.; Del-Claro, K.; Prezoto, F.; Campos, N.R. & Barbosa, B.C. 2012. Flower-visiting social wasps and plants interaction: Network pattern and environmental complexity. Psyche: A Journal of Entomology, (Special Issue): 1-10. https://doi.org/10.1155/2012/478431.

Cooper, R.; Lee, H.; González, J.M.; Butler, J.; Vinson, S.B. & Liang, H. 2009. Lubrication and surface properties of roach cuticle. Journal of Tribology, 131(1): 1-4. https://doi.org/10.1115/1.3002327.

Dapporto, L.; Liebert, A.E.; Starks, P.T. & Turillazzi, S. 2009. The relationships between cuticular hydrocarbon composition, faunal assemblages, inter-island distance, and population genetic variation in Tuscan Archipelago wasps. Biochemical Systematics and Ecology, 37(4): 341-348. https://doi.org/10.1016/j.bse.2009.05.018.

Dapporto, L.; Palagi, E. & Turillazzi, S. 2004a. Cuticular Hydrocarbons of Polistes dominulus as a Biogeographic Tool: A Study of Populations from the Tuscan Archipelago and Surrounding Areas. Journal of Chemical Ecology, 30(11): 2139-2151. https://doi.org/10.1023/B:JOEC.0000048779.47821.38.

Dapporto, L; Theodora, P.; Spacchini, C.; Pieraccini, G. & Turillazzi, S. 2004b. Rank and epicuticular hydrocarbons in different populations of the paper wasp Polistes dominulus (Christ) (Hymenoptera, Vespidae). Insectes Sociaux, 51(3): 279-286. https://doi.org/10.1007/s00040-004-0738-0.

Dejean, A.; Corbara, B. & Carpenter, J.M. 1998. Nesting site selection by wasps in the Guianese rain forest. Insectes Sociaux, 45(1): 33-41. https://doi.org/10.1007/s000400050066.

van Den Dool, H. & Dec. Kratz, P. 1963. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11(C): 463-471. https://doi.org/10.1016/S0021-9673(01)80947-X.

Duarte, B.F.; Michelutti, K.B.; Antonialli-Jr., W.F. & Cardoso, C.A.L. 2019. Effect of temperature on survival and cuticular composition of three different ant species. Journal of Thermal Biology, 80: 178-189. https://doi.org/10.1016/j.jtherbio.2019.02.005.

Espelie, K.E. & Hermann, H.R. 1990. Surface lipids of the social wasp Polistes annularis (L.) and its nest and nest pedicel. Journal of Chemical Ecology, 16(6): 1841-1852. https://doi.org/10.1007/BF01020498.

Espelie, K.E.; Wenzel, J.W. & Chang, G. 1990. Surface lipids of social wasp Polistes melricus say and its nest and nest pedicel and their relation to nestmate recognition. Journal of Chemical Ecology, 16(7): 2229-2241. https://doi.org/10.1007/BF01026933.

Etges, W.J. & Ahrens, M.A. 2001. Premating Isolation Is determined by larval‐rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in Epicuticular hydrocarbons among Isolated populations. The American Naturalist, 158(6): 585-598. https://doi.org/10.1086/323587.

Ferreira, A.C.; Neves, E.F.; Montagna, T.S.; Mendonça, A.; Cardoso, C.A.L. & Antonialli, W.F. 2017. Intraspecific Variation of the Composition of Linear Alkanes in Social Wasp Mischocyttarus consimilis. Sociobiology, 64(4): 442-450. https://doi.org/10.13102/sociobiology.v64i4.1857.

Fisher, K.; West, M.; Lomeli, A.M.; Woodard, S.H. & Purcell, J. 2018. Are societies resilient? Challenges faced by social insects in a changing world. Insectes Sociaux, 66(1): 5-13. https://doi.org/10.1007/s00040-018-0663-2.

Gamboa, G.J.; Grudzien, T.A.; Espelie, K.E. & Bura, E.A. 1996. Kin recognition pheromones in social wasps: combining chemical and behavioural evidence. Animal Behaviour, 51(3): 625-629. https://doi.org/10.1006/anbe.1996.0067.

Gibbs, A.G. 2002. Lipid melting and cuticular permeability: new insights into an old problem. Journal of Insect Physiology, 48(4): 391-400. https://doi.org/10.1016/S0022-1910(02)00059-8.

Gibbs, A.G. & Pomonis, J.G. 1995. Physical properties of insect cuticular hydrocarbons: The effects of chain length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology – Part B: Biochemistry and Molecular Biology, 112(2): 243-249. https://doi.org/10.1016/0305-0491(95)00081-X.

Gibbs, A.G. & Rajpurohit, S. 2010. Cuticular lipids and water balance, in Insect Hydrocarbons Biology, Biochemistry, and Chemical Ecology. https://doi.org/10.1017/CBO9780511711909.007.

Gibo, D.L. 1978. The selective advantage of foundress associations in Polistes fuscatus (hymenoptera: Vespidae): A field study of the effects of predation on productivity. The Canadian Entomologist, 110(5): 519-540. https://doi.org/10.4039/Ent110519-5.

Gobbi, N. 1978. Determinação do raio de vôo de operárias de P. versicolor (Hymenoptera, Vespidae). Ciência e Cultura, (30): 364-365.

Gould, W.P. & Jeanne, R.L. 1984. Polistes wasps (Hymenoptera: Vespidae) as control agents for Lepidopterous cabbage pests. Environmental Entomology, 13(1): 150-156. https://doi.org/10.1093/ee/13.1.150.

Graça, M.B. & Somavilla, A. 2019. Effects of forest fragmentation on community patterns of social wasps (Hymenoptera: Vespidae) in Central Amazon. Austral Entomology, 58(3): 657-665. https://doi.org/10.1111/aen.12380.

Hallett, A.C.; Mitchell, R.J.; Chamberlain, E.R. & Karron, J.D. 2017. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators. AoB PLANTS, 9(3): https://doi.org/10.1093/aobpla/plx020.

Hamida, Z.C.; Farine, J.P.; Ferveur, J.F. & Soltani, N. 2021. Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular hydrocarbon profile and sexual behavior in Drosophila melanogaster adults. Comparative Biochemistry and Physiology – Part C: Toxicology and Pharmacology, 243: 1-13. https://doi.org/10.1016/j.cbpc.2021.108981.

Hammer, O.; Harper, D.A.T. & Ryan, P.D. 2001. Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1): 1-9.

Howard, R.W. 2006. Cuticular Hydrocarbons of Adult Pteromalus cerealellae (Hymenoptera: Pteromalidae) and Two Larval Hosts, Angoumois Grain Moth (Lepidoptera: Gelechiidae) and Cowpea weevil (Coleptera: Bruchidae). Annals of the Entomological Society of America, 94(1): 152-158. https://doi.org/10.1603/0013-8746(2001)094[0152:choapc]2.0.co;2.

Howard, R.W. & Blomquist, G.J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50(1): 371-393. https://doi.org/10.1146/annurev.ento.50.071803.130359.

Howard, R.W.; Pérez-Lachaud, G. & Lachaud, J.-P. 2006. Cuticular Hydrocarbons of Kapala sulcifacies (Hymenoptera: Eucharitidae) and Its Host, the Ponerine Ant Ectatomma ruidum (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 94(5): 707-716. https://doi.org/10.1603/0013-8746(2001)094[0707:choksh]2.0.co;2.

Huston, M.A. 2005. The three ases of land-use change: implications for biodiversity. Ecological Applications, 15(6): 1864-1878. https://doi.org/10.1890/03-5281.

Instituto Brasileiro de Geografia e Estatística (IBGE). 2013. Manual técnico de uso da terra. IBGE. Rio de Janeiro.

Instituto Brasileiro de Geografia e Estatística (IBGE). 2018. Monitoramento da cobertura e uso da terra do Brasil: 2014-2016. IBGE.

International Union for Conservation of Nature and Natural Resources (IUCN). 2021. The IUCN Red List of Threatened Species. Version 2020-3. https://www.iucnredlist.org. Access: 12/01/2021.

Jackson, L.L. 1983. Cuticular hydrocarbons of the milkweed bug, Oncopeltus fasciatus by age and sex. Insect Biochemistry, 13(1): 19-25. https://doi.org/10.1016/0020-1790(83)90060-4.

Kaib, M.; Jmhasly, P.; Wilfert, L.; Durka, W.; Franke, S.; Francke, W.; Leuthold, R.H. & Brandl, R. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes Subhyalinus. Journal of Chemical Ecology, 30(2): 365-385. https://doi.org/10.1023/B:JOEC.0000017983.89279.c5.

Klingner, R.; Richter, K. & Schmolz, E. 2006. Strategies of social wasps for thermal homeostasis in light paper nests. Journal of Thermal Biology, 31(8): 599-604. https://doi.org/10.1016/j.jtherbio.2006.08.005.

Lawton, J.H. 1983. Plant Architecture and the Diversity of Phytophagous Insects. Annual Review of Entomology, 28(1): 23-39. https://doi.org/10.1146/annurev.en.28.010183.000323.

Layton, J.M. & Espelie, K.E. 1995. Effects of nest paper hydrocarbons on nest and nestmate recognition in colonies of Polistes metricus say. Journal of Insect Behavior, 8(1): 103-113. https://doi.org/10.1007/BF01990972.

Leonhardt, S.D.; Menzel, F.; Nehring, V. & Schmitt, T. 2016. Ecology and Evolution of Communication in Social Insects. Cell, 164(6): 1277-1287. https://doi.org/10.1016/j.cell.2016.01.035.

Liang, D. & Silverman, J. 2000. "You are what you eat": Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften, 87(9): 412-416. https://doi.org/10.1007/s001140050752.

Lorenzi, M.C.; Azzani, L. & Bagnères, A.G. 2014. Evolutionary consequences of deception: Complexity and informational content of colony signature are favored by social parasitism. Current Zoology, 60(1): 137-148. https://doi.org/10.1093/czoolo/60.1.137.

Lorenzi, M.C.; Bagnères, A.G.; Clément, J.L. & Turillazzi, S. 1997. Polistes biglumis bimaculatus epicuticular hydrocarbons and nestmate recognition (Hymenoptera, Vespidae). Insectes Sociaux, 44(2): 123-138. https://doi.org/10.1007/s000400050035.

Lorenzi, M.C.; Sledge, M.F.; Laiolo, P.; Sturlini, E. & Turillazzi, S. 2004. Cuticular hydrocarbon dynamics in young adult Polistes dominulus (Hymenoptera: Vespidae) and the role of linear hydrocarbons in nestmate recognition systems. Journal of Insect Physiology, 50(10): 935-941. https://doi.org/10.1016/j.jinsphys.2004.07.005.

Luck, M. & Wu, J. 2002. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecology, 17: 327-339. https://doi.org/10.1023/A:1020512723753.

McGarigal, K.; Stafford, S. & Cushman, S. 2000. Multivariate Statistics for Wildlife and Ecology Research. New York, Springer. https://doi.org/10.1007/978-1-4612-1288-1.

Menzel, F.; Blaimer, B.B. & Schmitt, T. 2017. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proceedings of the Royal Society B: Biological Sciences, 284(1850): 20161727. https://doi.org/10.1098/rspb.2016.1727.

Menzel, F.; Morsbach, S.; Martens, J.H.; Räder, P.; Hadjaje, S.; Poizat, M. & Abou, B. 2019. Communication versus waterproofing: the physics of insect cuticular hydrocarbons. Journal of Experimental Biology, 222(23): jeb210807. https://doi.org/10.1242/jeb.210807.

Meskali, M.; Bonavita-Cougourdan, A.; Provost, E.; Bagnères, A.G.; Dusticier, G. & Clément, J.L. 1995. Mechanism underlying cuticular hydrocarbon homogeneity in the ant Camponotus vagus (SCOP) (Hymenoptera: Formicidae): Role of postpharyngeal glands. Journal of Chemical Ecology, 21(8): 1127-1148. https://doi.org/10.1007/BF02228316.

Michelutti, K.B.; Cardoso, C.A.L. & Antonialli-Jr., W.F. 2017. Evaluation of chemical signatures in the developmental stages of Mischocyttarus consimilis zikán (Hymenoptera, Vespidae) employing gas chromatography coupled to mass spectrometry. Revista Virtual de Quimica, 9(2): 535-547. https://doi.org/10.21577/1984-6835.20170031.

Michelutti, K.B.; Montagna, T.S. & Antonialli-Jr., W.F. 2013. Effect of habitat disturbance on colony productivity of the social wasp Mischocyttarus consimilis Zikán (Hymenoptera, Vespidae). Sociobiology, 60(1): 96-100. https://doi.org/10.13102/sociobiology.v60i1.96-100.

Michelutti, K.B.; Soares, E.R.P.; Sguarizi-Antonio, D.; Piva, R.C.; Súarez, Y.R.; Cardoso, C.A.L. & Antonialli-Jr., W.F. 2018. Influence of temperature on survival and cuticular chemical profile of social wasps. Journal of Thermal Biology, 71(September 2017): 221-231. https://doi.org/10.1016/j.jtherbio.2017.11.019.

Miyanaga, R.; Maeta, Y. & Sakagami, S.F. 1999. Geographical variation of sociality and size-linked color patterns in Lasioglossum (Evylaeus) apristum (Vachal) in Japan (Hymenoptera, Halictidae). Insectes Sociaux, 46(3): 224-232. https://doi.org/10.1007/s000400050138.

Müller, T.; Prosche, A. & Müller, C. 2017. Sublethal insecticide exposure affects reproduction, chemical phenotype as well as offspring development and antennae symmetry of a leaf beetle. Environmental Pollution, 230: 709-717. https://doi.org/10.1016/j.envpol.2017.07.018.

Nelson, D.R. 2018. Cytochrome P450 diversity in the tree of life. Biochimica et Biophysica Acta – Proteins and Proteomics, (1886): 141-154. https://doi.org/10.1016/j.bbapap.2017.05.003.

Oliveira, T.C.T.; Souza, M.M. & Pires, E.P. 2017. Nesting habits of social wasps (Hymenoptera: Vespidae) in forest fragments associated with anthropic areas in southeastern Brazil. Sociobiology, 64(1): 101-104.

Page, R.E.; Metcalf, R.A.; Metcalf, R.L.; Erickson, E.H. & Lampman, R.L. 1991. Extractable hydrocarbons and kin recognition in honeybee (Apis mellifera L.). Journal of Chemical Ecology, 17(4): 745-756. https://doi.org/10.1007/BF00994197.

Pfennig, D.W.; Gamboa, G.J.; Reeve, H.K.; Reeve, J.S. & Ferguson, I.D. 1983. The mechanism of nestmate discrimination in social wasps (Polistes, Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 13(4): 299-305. https://doi.org/10.1007/BF00299677.

Prezoto, F. & Machado, V.L. 1999. Ação de Polistes (Aphanilopterus) simillimus Zikán (Hymenoptera, Vespidae) no controle de Spodoptera frugiperda (Smith) (Lepidoptera, Noctuidae). Revista Brasileira de Zoociências, 1(1): 19-30. https://doi.org/10.1590/s0101-81751999000300021.

Prezoto, F.; Barbosa, B.C.; Maciel, T.T. & Detoni, M. 2016. Agroecossistemas e o serviço ecológico dos insetos na sustentabilidade. In: Resende, Prezoto, Barbosa & Gonçalves (Eds.). Sustentabilidade: tópicos da zona da Mata Mineira. Juiz de Fora, Real Consultoria em Negócios Ltda. 19-30. https://doi.org/10.5281/zenodo.4024961.

Prezoto, F.; Cortes, S.D.O. & Melo, A.C. 2008. Vespas: de vilãs a parceiras. Ciência Hoje, (48): 70-73.

Provost, E.; Blight, O.; Tirard, A. & Renucci, M. 2008. Hydrocarbons and insects' social physiology. In: Maes (Ed.). Insect physiology: New Research. UK, Nova Science Publishers, Inc. p. 19-72.

Ratnieks, F.L.W. 1991. The evolution of genetic odor-cue diversity in social Hymenoptera. American Naturalist, 137(2): 202-226. https://doi.org/10.1086/285154.

Richards, O.W. 1971. The biology of the social wasps (Hymenoptera, Vespidae). Biological Reviews, 46(4): 483-528. https://doi.org/10.1111/j.1469-185x.1971.tb01054.x.

Ruther, J.; Döring, M. & Steiner, S. 2011. Cuticular hydrocarbons as contact sex pheromone in the parasitoid Dibrachys cavus. Entomologia Experimentalis et Applicata, 140(1): 59-68. https://doi.org/10.1111/j.1570-7458.2011.01129.x.

Santos, G.M.M.; Santana-Reis, V.P.G.; Resende, J.J.; Marco, P.D. & Bichara-Filho, C.C. 2001. Flying capacity of swarm-founding wasp Polybia occidentalis occidentalis Oliver, 1791 (Hymenoptera, Vespidae). Revista Brasileira de Zoociências, 3(2): 33-39.

Schuehly, W.; Riessberger-Gallé, U. & Hernández López, J. 2021. Sublethal pesticide exposure induces larval removal behavior in honeybees through chemical cues. Ecotoxicology and Environmental Safety, 228(113020). https://doi.org/10.1016/j.ecoenv.2021.113020.

Sessa, L.; Calderón-Fernández, G.M.; Abreo, E.; Altier, N.; Mijailovsky, S.J.; Girotti, J.R. & Pedrini, N. 2021. Epicuticular hydrocarbons of the redbanded stink bug Piezodorus guildinii (Heteroptera: Pentatomidae): sexual dimorphism and alterations in insects collected in insecticide-treated soybean crops. Pest Management Science, 77(11): 4892-4902. https://doi.org/10.1002/ps.6528.

Sevala, V.L.; Bagnères, A.G.; Kuenzli, M.; Blomquist, G.J. & Schal, C. 2000. Cuticular hydrocarbons of the dampwood termite, Zootermopsis nevadensis: Caste differences and role of lipophorin in transport of hydrocarbons and hydrocarbon metabolites. Journal of Chemical Ecology, 26(3): 765-789. https://doi.org/10.1023/A:1005440624678.

Sguarizi-Antonio, D.; Michelutti, K.B.; Soares, E.R.P.; Batista, N.R.; Lima-Jr., S.E.; Cardoso, C.A.L.; de Oliveira Torres, V. & Antonialli-Jr., W.F. 2021. Colonial chemical signature of social wasps and their nesting substrates. Chemoecology, 32: 41-47. https://doi.org/10.1007/s00049-021-00361-5.

Sguarizi-Antonio, D.; Torres, V.O.; Firmino, E.L.B.; Lima, S.M.; Andrade, L.H.C. & Antonialli-Jr., W.F. 2017. Observation of intra- and interspecific differences in the nest chemical profiles of social wasps (Hymenoptera: Polistinae) using infrared photoacoustic spectroscopy. Journal of Photochemistry and Photobiology B: Biology, 176: 165-170. https://doi.org/10.1016/j.jphotobiol.2017.10.001.

Sih, A.; Ferrari, M.C.O. & Harris, D.J. 2011. Evolution and behavioural responses to human-induced rapid environmental change. Evolutionary Applications, 4(2): 367-387. https://doi.org/10.1111/j.1752-4571.2010.00166.x.

Silva, E.R.S.; Michelutti, K.B.; Antonialli-Jr., W.F.; Batistote, M. & Cardoso, C.A.L. 2016. Chemical signatures in the developmental stages of Protopolybia exigua. Genetics and Molecular Research, 15(1): 1-12. https://doi.org/10.4238/gmr.15017586.

Singer, T.L. & Espelie, K.E. 1992. Social wasps use nest paper hydrocarbons for nestmate recognition. Animal Behaviour, 44(1): 63-68. https://doi.org/10.1016/S0003-3472(05)80755-9.

Singer, T.L.; Espelie, K.E. & Himmelsbach, D.S. 1992. Ultrastructural and chemical examination of paper and pedicel from laboratory and field nests of the social wasp Polistes metricus say. Journal of Chemical Ecology, 18(1): 77-86. https://doi.org/10.1007/BF00997166.

Singer, T.L.; Espelle, K.E. & Gamboa, G.J. 1998. Nest and Nestmate Discrimination in Independent-Founding Paper Wasps. In: Vander-Meer, Breed, Espelie & Winston (Eds.). Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites. New York, CRC Press. p. 104-125. https://doi.org/10.1201/9780429301575-5.

Soares, E.R.P.; Batista, N.R.; Souza, R. da S.; Torres, V. de O.; Cardoso, C.A.L.; Nascimento, F.S. & Antonialli-Jr., W.F. 2017. Variation of cuticular chemical compounds in three species of Mischocyttarus (Hymenoptera: Vespidae) eusocial wasps. Revista Brasileira de Entomologia, 61(3): 224-231. https://doi.org/10.1016/j.rbe.2017.05.001.

Southon, R.J.; Fernandes, O.A.; Nascimento, F.S. & Sumner, S. 2019. Social wasps are effective biocontrol agents of key lepidopteran crop pests. Proceedings of the Royal Society B: Biological Sciences, 286: 20191676. https://doi.org/10.1098/rspb.2019.1676.

Souza, M.; Ladeira, T.E.; Assis, N.R.G.; Campos, A.E.; Carvalho, P. & Louzada, J.N.C. 2010. Ecologia de vespas sociais (Hymenoptera, Vespidae) no Campo Rupestre na Área de Proteção Ambiental, APA, São José, Tiradentes, MG. Biota, 3(2): 16.

Sprenger, P.P. & Menzel, F. 2020. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: How and why they differ among individuals, colonies, and species. Myrmecological News, 30: 1-26. https://doi.org/10.25849/myrmecol.news_030001.

Sprenger, P.P.; Burkert, L.H.; Abou, B.; Federle, W. & Menzel, F. 2018. Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. Journal of Experimental Biology, 221(9): jeb171488. https://doi.org/10.1242/jeb.171488.

Sumana, A.; Liebert, A.E.; Berry, A.S.; Switz, G.T.; Orians, C.M. & Starks, P.T. 2005. Nest hydrocarbons as cues for philopatry in a paper wasp. Ethology, 111(5): 469-477. https://doi.org/10.1111/j.1439-0310.2005.01072.x.

Tokoro, M. & Makino, S. 2011. Colony and caste specific cuticular hydrocarbon profiles in the common Japanese hornet, Vespa analis (Hymenoptera, Vespidae). Japan Agricultural Research Quarterly, 45(3): 277-283. https://doi.org/10.6090/jarq.45.277.

Torres, R.F.; Torres, V.D.O.; Súarez, Y.R. & Antonialli-Jr., W.F. 2014. Effect of Human Disturbance on Colony Productivity of the Social Wasp Polistes versicolor Olivier (Hymenoptera: Vespidae). Sociobiology, 61(1): 100-106. https://doi.org/10.13102/sociobiology.v61i1.100-106.

Turillazzi, S.; Mastrobuoni, G.; Dani, F.R.; Moneti, G.; Pieraccini, G.; La Marca, G.; Bartolucci, G.; Perito, B.; Lambardi, D.; Cavallini, V. & Dapporto, L. 2006. Dominulin A and B: Two new antibacterial peptides identified on the cuticle and in the venom of the social paper wasp Polistes dominulus using MALDI-TOF, MALDI-TOF/TOF, and ESI-ion trap. Journal of the American Society for Mass Spectrometry, 17(3): 376-383. https://doi.org/10.1016/j.jasms.2005.11.017.

Tylianakis, J.M.; Didham, R.K.; Bascompte, J. & Wardle, D.A. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12): 1351-1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x.

Urbini, A.; Sparvoli, E. & Turillazzi, S. 2006. Social paper wasps as bioindicators: a preliminary research with Polistes dominulus (Hymenoptera Vespidae) as a trace metal accumulator. Chemosphere, 64(5): 697-703. https://doi.org/10.1016/j.chemosphere.2005.11.009.

Weeks, A.R.; McKechnie, S.W. & Hoffmann, A.A. 2002. Dissecting adaptive clinal variation: Markers, inversions and size/stress associations in Drosophila melanogaster from a central field population. Ecology Letters, 5(6): 756-763. https://doi.org/10.1046/j.1461-0248.2002.00380.x.

Weiss, K.; Parzefall, C. & Herzner, G. 2014. Multifaceted Defense against Antagonistic Microbes in Developing Offspring of the Parasitoid Wasp Ampulex compressa (Hymenoptera, Ampulicidae). PLoS ONE, 9(6): e98784. https://doi.org/10.1371/journal.pone.0098784.

Wenzel, J.W. 1980. A Generic key to the nests of hornets, yellowjackets, ans paper wasps worldwide (Vespidae: Vespinae, Polistinae). American Museum Novitates, 3224: 1-39.

Wilson, E.O. 1990. Success and dominance in ecosystems: the case of the social insects. Oldendorf/Luhe, Federal Republic of Germany: Ecology Institute.

Yan, H. & Liebig, J. 2021. Genetic basis of chemical communication in eusocial insects. Genes and Development, 35(7-8): 470-482. https://doi.org/10.1101/gad.346965.120.

Yusuf, A.A.; Pirk, C.W.W.; Crewe, R.M.; Njagi, P.G.N.; Gordon, I. & Torto, B. 2010. Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant Pachycondyla analis. Journal of Chemical Ecology, 36(4): 441-448. https://doi.org/10.1007/s10886-010-9774-6.

Zhu, G.H.; Ye, G.Y.; Hu, C.; Xu, X.H. & Li, K. 2006. Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: Potential for determining larval age. Medical and Veterinary Entomology, 20(4): 438-444. https://doi.org/10.1111/j.1365-2915.2006.00651.x.

Downloads

Published

2022-03-10

Issue

Section

Original Article

How to Cite

Sguarizi-Antonio, D., Batista, N. R., Michelutti, K. B., Soares, E. R. P., Solórzano, J. C. J., Cardoso, C. A. L., Lima-Júnior, S. E., Torres, V. de O., & Antonialli-Júnior, W. F. (2022). Anthropic action affects the cuticular chemical profile of social wasps. Papéis Avulsos De Zoologia, 62, e202262013. https://doi.org/10.11606/1807-0205/2022.62.013