Biotic rather than abiotic factors influence ground-dwelling mygalomorph spider assemblages along an altitudinal gradient in the Brazilian semi-arid domain

Authors

DOI:

https://doi.org/10.11606/1807-0205/2025.65.001

Keywords:

Araneae, Brejos de altitude, Tarantula, Edaphic arthropods, Caatinga

Abstract

The species richness of organisms associated with altitudinal gradients tends to decline with increasing altitude, however, this pattern is not observed in mygalomorph. The present study tests the hypothesis that the richness and abundance of ground-dwelling mygalomorph spiders will be positively correlated with the increase in altitude, as well as will be influenced by variation of potential prey along an altitudinal gradient in the Brazilian semi-arid domain. Sampling took place during August 2020 to August 2021, through pitfall traps, totaling 50 traps/area/month. A total of 125 adult individuals belonging to 10 morphospecies were collected along the altitudinal gradient. Theraphosidae was the richest family in morphospecies, the most abundant mygalomorph was Neodiplotele caucaia Gonzalez-Filho, Lucas & Brescovit, 2015, Guyruita sp., and Diplura sanguinea (F.O. Pickard-Cambridge, 1896). Our results shows that mygalomorph abundance and species richness were affected by potential prey availability and not by altitude per se. Therefore, our results shows that the biotic (e.g., availability of potential preys) and no abiotic (e.g., elevation) may have a key factor to the mygalomorph spider assemblage modulation along an altitudinal gradient. The study opens precedents for further investigations on the distribution patterns of mygalomorph spiders in the Brazilian semiarid region.

Downloads

Download data is not yet available.

References

Almeida-Neto, M.; Machado, G.; Pinto-Da-Rocha, R. & Giaretta, A.A. 2006. Harvestman (Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an alternative rescue effect for explain Rapoport’s rule? Journal of Biogeography, 33(2): 361-375. https://doi.org/10.1111/j.1365-2699.2005.01389.x

Araújo, C.S.; Candido, D.M.; Araújo, H.F.; Dias, S.C. & Vasconcellos, A. 2010. Seasonal variations in scorpion activities (Arachnida: Scorpiones) in an area of Caatinga vegetation in northeastern Brazil. Zoologia, 27(3): 372-376. https://doi.org/10.1590/S1984-46702010000300008

Azevedo, R.; Sales, L.G.; de Azevedo, F.R.; de Araújo Lira, A.F. & Sobczak, J.F. 2024. Rapoport effects in edaphic spiders (Araneae) diversity along an elevational gradient in Brazilian semiarid domain. Studies on Neotropical Fauna and Environment, (2024): 1-10. https://doi.org/10.1080/01650521.2024.2395717

Barrow, L. & Parr, C.L. 2008. A preliminary investigation of temporal patterns in semiarid ant communities: variation with habitat type. Austral Ecology, 33(5): 653-662. https://doi.org/10.1111/j.1442-9993.2008.01832.x

Brescovit, A.D.; Sherwood, D. & Lucas, S.M. 2021. First description of the males of Diplura sanguinea (F.O. Pickard-Cambridge, 1896) and Diplura nigra (F.O. Pickard-Cambridge, 1896) from Brazilian Amazonia, with notes on biogeography and opisthosomal patterning (Araneae: Dipluridae). Arachnology, 18(7): 681-689. https://doi.org/10.13156/arac.2020.18.7.681

Brown, J.H. & Lomolino, M.V. 1998. Biogeography. Massachutets, Sinauer Associates. 704p.

Cardoso, P.; Silva, I.; De Oliveira, N.G. & Serrano, A.R. 2007. Seasonality of spiders (Araneae) in Mediterranean ecosystems and its implications in the optimum sampling period. Ecological Entomology, 32(5): 516-526. https://doi.org/10.1111/j.1365-2311.2007.00894.x

Carvalho, L.S. 2015. Aracnídeos: quem são, por que estudá-los e como coletá-los? In: Lima, M.S.C.S.; Carvalho, L.S. & Prezoto, F. (Orgs.). Métodos em ecologia e comportamento animal. Teresina, EDUFPI. p. 103-140.

Carvalho, L.S.; Sebastian, N.; Araújo, H.F.; Dias, S.C.; Venticinque, E.; Brescovit, A.D. & Vasconcellos, A. 2015. Climatic variables do not directly predict spider richness and abundance in semiarid Caatinga vegetation, Brazil. Environmental Entomology, 44(1): 54-63. https://doi.org/10.1093/ee/nvu003

Chao, A. & Shen, T.-J. 2004. Nonparametric prediction in species sampling. Journal of Agricultural, Biological, and Environmental Statistics, 9(3): 253-269. https://doi.org/10.1198/108571104X3262

Fabiano-da-Silva, W.; Guadanucci, J.P.L. & DaSilva, M.B. 2019. Taxonomy and phylogenetics of Tmesiphantes Simon, 1892 (Araneae, Theraphosidae). Systematics and Biodiversity, 17(7): 650-668. https://doi.org/10.10.1080/14772000.2019.1685021

Ferretti, N.; Cavallo, P.; Chaparro, J.C.; Ríos-Tamayo, D.; Seimon, T.A. & West, R. 2018. The neotropical genus Hapalotremus Simon, 1903 (Araneae: Theraphosidae), with the description of seven new species and the highest altitude record for the family. Journal of Natural History, 52(29-30): 1927-1984. https://doi.org/10.1080/00222933.2018.1506521

Ferretti, N.; Pompozzi, G.; Copperi, S.; Pérez-Miles, F. & González, A. 2012. Mygalomorph spider community of a natural reserve in a hilly system in central Argentina. Journal of Insect Science, 12: 31. https://doi.org/10.1673/031.012.3101

Foelix, R.F. 2011. Biology of spiders. New York, Oxford University Press. 330p.

Gonzalez-Filho, H.M.; Lucas, S.M. & Brescovit, A.D. 2015. A revision of Neodiplothele (Araneae: Mygalomorphae: Barychelidae). Zoologia, Curitiba, 32(3): 225-240. https://doi.org/10.1590/S1984-46702015000300007

Halaj, J.; Ross, D.W. & Moldenke, A.R. 1998. Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western Oregon forest canopies. Journal of Arachnology, 26(2): 203-220.

Hénaut, Y. & Machkour-M’Rabet, S. 2020. Predation and other interactions. In: Pérez-Miles, F. (Ed.). 2020. New world Tarantulas: taxonomy, biogeography and evolutionary biology of Theraphosidae. p. 237-271. (Zoological Monographs, 6). https://doi.org/10.1007/978-3-030-48644-0_8

Hortal, J.; DeBello, F.; Diniz-Filho, J.A.F.; Lewinsohn, T.M.; Lobo, J.M. & Ladle, R.J. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46: 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400

Hullbert, J.H. 1984. Pseudoreplication and the design of field experiments in ecology. Ecological Monographs, 54: 187-211. https://doi.org/10.2307/1942661

Kaderka, R. 2015. Bistriopelma, un género nuevo con dos nuevas especies de Perú (Araneae: Theraphosidae: Theraphosinae). Revista Peruana de Biología, 22(3): 275-288. https://doi.org/10.15381/rpb.v22i3.11432

Kaderka, R.; Ferretti, N.; Hüsser, M.; Lüddecke, T. & West, R. 2021. Antikuna, a new genus with seven new species from Peru (Araneae: Theraphosidae: Theraphosinae) and the highest altitude record for the family. Journal of Natural History, 55(21-22): 1335-1402. https://doi.org/10.1080/00222933.2021.1936680

Langlands, P.R.; Brennan, K.E.C. & Pearson, D.J. 2006. Spiders, spinifex, rainfall and fire: Long-term changes in an arid spider assemblage. Journal of Arid Environments, 67: 36-59. https://doi.org/10.1016/j.jaridenv.2006.01.018

Leal, I.R.; Silva, J.M.C.; Tabarelli, M. & Lacher, T.E. 2005. Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conservation Biology, 19(3): 701-706. https://doi.org/10.1111/j.1523-1739.2005.00703.x

Lira, A.F.A.; DeSouza, A.M. & Albuquerque, C.M.R. 2018. Environmental variation and seasonal changes as determinants of the spatial distribution of scorpions (Arachnida: Scorpiones) in Neotropical forests. Canadian Journal of Zoology, 96(9): 963-972. https://doi.org/10.1139/cjz-2017-0251

Lomolino, M.V. 2001. Elevation gradients of species‐density: historical and prospective views. Global Ecology and Biogeography, 10(1): 3-13. https://doi.org/10.1046/j.1466-822x.2001.00229.x

M’rabet, S.M.; Hénaut, Y.; Sepúlveda, A.; Rojo, R.; Calmé, S. & Geissen, V. 2007. Soil preference and burrow structure of an endangered tarantula, Brachypelma vagans (Mygalomorphae: Theraphosidae). Journal of Natural History, 41(17-20): 1025-1033. https://doi.org/10.1080/00222930701384547

Malumbres-Olarte, J.; Crespo, L.; Cardoso, P.; Szűts, T.; Fannes, W.; Pape, T. & Scharff, N. 2018. The same but different: equally megadiverse but taxonomically variant spider communities along an elevational gradient. Acta Oecologica, 88: 19-28. https://doi.org/10.1016/j.actao.2018.02.012

Miglio, L.T.; Bonaldo, A.B. & Pérez-Miles, F. 2013. On Munduruku, a new Theraphosid genus from Oriental Amazonia (Araneae, Mygalomorphae). Iheringia, Série Zoologia, 103: 185-189. https://doi.org/10.1590/S0073-47212013000200013

Mineo, M.F.; Del-Claro, K. & Brescovit, A.D. 2010. Seasonal variation of ground spiders in a Brazilian Savanna. Zoologia, Curitiba, 27(3): 353-362. https://doi.org/10.1590/S1984-46702010000300006

Moura-Fé, M.M. 2018. As serras úmidas na ocupação do território cearense. Revista da Casa da Geografia de Sobral, 20(2): 19-29.

Moura-Neto, C.; Azevedo, R.; Santiago, L.A; Sobczak, J.F.; Araújo-Júnior, J.M.C.; Falcão, K.A.; Silfarney, D.S.A.; Brescovit, A.D.; Carvalho, L.S.; Santos, A.J.; Russo, P. & Kury, A.B. 2021. Lista de Aracnídeos do Ceará. Fortaleza, Secretaria do Meio Ambiente do Ceará. Available: https://www.sema.ce.gov.br/fauna-do-ceara/invertebrados/aracnideos. Access: 01/11/2021.

Nogueira, A.D.A.; Brescovit, A.D.; Perbiche-Neves, G. & Venticinque, E.M. 2021. Spider (Arachnida-Araneae) diversity in an amazonian altitudinal gradient: are the patterns congruent with mid-domain and rapoport effect predictions? Biota Neotropica, 21(4): e20211210. https://doi.org/10.1590/1676-0611-bn-2021-1210

Oliveira, T.S. & Araújo, F.S. 2007. Diversidade e conservação da biota na Serra de Baturité, Ceará. Fortaleza: Edições UFC; COELCE, 2007.

Owen, J.G. 1990. Patterns of mammalian species richness in relation to temperature, productivity, and variance in elevation. Journal of Mammalogy, 71: 1-13. https://doi.org/10.2307/1381311

Perafán, C.; Ferretti, N. & Hendrixson, B.E. 2020. Biogeography of New World Tarantulas. In: Pérez-Miles, F. (Ed.). New World Tarantulas: taxonomy, biogeography and evolutionary biology of Theraphosidae. Springer Nature. p. 153-190. https://doi.org/10.1007/978-3-030-48644-0_6

Pérez-Miles, F. (Ed.). 2020. New World Tarantulas: Taxonomy, Biogeography and Evolutionary Biology of Theraphosidae. Springer Nature. (Zoological Monographs, 6) https://doi.org/10.1007/978-3-030-48644-0

Pickard-Cambridge, F.O. 1896. On the Theraphosidae of the lower Amazons: being an account of the new genera and species of this group of spiders discovered during the expedition of the steamship “Faraday” up the river Amazons. Proceedings of the Zoological Society of London, 64(3): 716-766, pl. 33-35. https://doi.org/10.1111/j.1096-3642.1896.tb03076.x

Prado, D. 2003. As caatingas da América do Sul. In: Leal, I.R.; Tabarelli, M. & Silva, J.M.C. (Eds.). Ecologia e conservação da Caatinga. Recife, Editora Universitária da UFPE. p. 3-73.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Avaliable: https://www.R-project.org. Access: 10/06/2020.

Rahbek, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography, 18(2): 200-205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x

Reyes-López, J.; Ruiz, N. & Fernández-Haeger, J. 2003. Community structure of ground-ants: the role of single trees in a Mediterranean pastureland. Acta Oecologica, 24(4): 195-202. https://doi.org/10.1016/S1146-609X(03)00086-9

Romero, G.Q. & Vasconellos-Neto, J. 2003. Natural history of Misumenops argenteus (Thomisidae): seasonality and diet on Trichogoniopsis adenantha (Asteraceae). Journal of Arachnology, 31(2): 297-304. https://doi.org/10.1636/02-19

Salomão, R.P.; Correa, C.M.D.A.; Santorelli-Junior, S.; Lima, A.P.; Magnusson, W.E.; Arruda, E.F.; Oliveira, A.P.V. & Cabral, R.C.C. 2023. Species diet and the effect of different spatial bait distribution on assemblage of dung beetles in Amazonian white-sand forest. International Journal of Tropical Insect Science, 43(3): 1153-1162. https://doi.org/10.1007/s42690-023-01012-8

Spears, L.R. & MacMahon, J.A. 2012. An experimental study of spiders in a shrub-steppe ecosystem: the effects of prey availability and shrub architecture. Journal of Arachnology, 40(2): 218-227. https://doi.org/10.1636/P11-87.1

Superintendência Estadual do Meio Ambiente (SEMACE). 2010. Área de Proteção Ambiental da Serra de Baturité. Fortaleza. Available: http://www.semace.ce.gov.br/2010/12/apa-da-serra-de-baturite. Access: 17/05/2022.

Triplehorn, C.A.; Johnson, N.F. & Borror, D.J. 2005. Borror and DeLong’s Introduction to the study of Insects. Brooks/Cole Publishing Company.

Vasconcellos, A.; Araújo, V.F.; Moura, F. & Bandeira, A.G. 2007. Biomass and population structure of Constrictotermes cyphergaster (Silvestri) (Isoptera: Termitidae) in the dry forest of Caatinga, Northeastern Brazil. Neotropical Entomology, 36(5): 693-698. https://doi.org/10.1590/S1519-566X2007000500009

Vasconcellos, A.R.; Andreazze, A.M.; Almeida, H.F.P.; Araújo, E.S. & Oliveira, U. 2010. Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Revista Brasileira de Entomologia, 54(3): 471-476. https://doi.org/10.1590/S0085-56262010000300019

Venables, W.N. & Ripley, B.D. 2002. Modern applied statistics with S. New York, Springer. https://www.stats.ox.ac.uk/pub/MASS4. https://doi.org/10.1007/978-0-387-21706-2_14

Werneck, F.P. 2011. The diversification of eastern South American open vegetation biomes: Historical biogeography and perspectives. Quaternary Science Reviews, 30 (13-14): 1630-1648. https://doi.org/10.1016/j.quascirev.2011.03.009

White, T. 2008. The role of food, weather and climate in limiting the abundance of animals. Biological Reviews, 83(3): 227-248. https://doi.org/10.1111/j.1469-185X.2008.00041.x

Wise, D.H. 1993. Spiders in ecological Webs. New York, Cambridge University Press., 328p. https://doi.org/10.1017/CBO9780511623431

World Spider Catalog. 2022. World Spider Catalog. Natural History Museum Bern, Version 23.5. Available: http://wsc.nmbe.ch. Access: 17/10/2022.

Yáñez, M. & Floater, G. 2000. Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klaasi (Araneae: Theraphosidae) in Mexico. Biodiversity & Conservation, 9(6): 795-810. https://doi.org/10.1023/A:1008976003011

Downloads

Published

2025-01-30

Issue

Section

Original Article

How to Cite

Villanueva-Bonilla, G. A., Azevedo, R., Araújo, K. F., Lira, A. F. de A., & Sobczak, J. F. (2025). Biotic rather than abiotic factors influence ground-dwelling mygalomorph spider assemblages along an altitudinal gradient in the Brazilian semi-arid domain. Papéis Avulsos De Zoologia, 65, e202565001. https://doi.org/10.11606/1807-0205/2025.65.001

Funding data