Otolith as a tool to differentiate juveniles of two species Centropomidae

Authors

  • Barbara Maichak de Carvalho Universidade Federal do Paraná (UFPR), Setor de Ciências da Terra, Centro de Estudos do Mar (CEM), Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO). Pontal do Paraná, PR, Brasil. https://orcid.org/0000-0001-7958-427X
  • Renato Luiz Bot Neto Universidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Zoologia (DZOO), Programa de Pós-Graduação em Ecologia e Conservação (PPGECO). Curitiba, PR, Brasil. https://orcid.org/0000-0002-9241-6219
  • Roberto Schwarz Júnior Universidade Federal de Sergipe (UFS), Centro de Ciências Agrárias Aplicadas (CCAA), Departamento de Engenharia de Pesca e Aquicultura (DEPAQ), Laboratório de Ecologia Pesqueira. São Cristóvão, SE, Brasil. https://orcid.org/0000-0002-1852-043X
  • Henry Louis Spach Universidade Federal do Paraná (UFPR), Setor de Ciências da Terra, Centro de Estudos do Mar (CEM), Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO). Pontal do Paraná, PR, Brasil. https://orcid.org/0000-0002-4100-2868
  • Alejandra Vanina Volpedo Universidad de Buenos Aires (UBA), Facultad de Ciencias Veterinarias (FVET), Instituto de Investigaciones en Producción Animal (INPA). Buenos Aires, D.F., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires, D.F., Argentina. https://orcid.org/0000-0003-3321-311X

DOI:

https://doi.org/10.11606/1807-0205/2024.64.007

Keywords:

Common snook, Swordspine snook, Estuary, Use habitat, River, Beach seine net

Abstract

Centropomus undecimalis and Centropomus ensifurus are a species belonging to the family Centropomidae, which has an important role in estuarine ecosystem. The present study aimed at comparing the otoliths shape of juveniles both species collected in in the lower São Francisco River (10°28′34.02″S, 36°24′27.02″W). In the laboratory, 52 otoliths were extracted, photographed, measured and the contour was analyzed by the wavelet method. The otolith contours varied between species (n = 28 C. ensiferus and n = 24 C. undecimalis). The Linear Discriminant Analysis correctly reclassified 92.3% of all otoliths among species. MANOVA also evidenced significant differences in contour between species (F = 3.73; p < 0.0001). The results suggest that C. ensiferus is adapted to enviroments with higher turbidity and the C. undecimalis tends to colonize environments with lower turbidity and spends more time in the water column.

Downloads

Download data is not yet available.

References

Assis, C.A. 2003. The lagenar otoliths of teleosts: their morphology and its application in species identification, phylogeny and systematics. Journal of Fish Biology, 62(6): 1268-1295. https://doi.org/10.1046/j.1095-8649.2003.00106.x.

Assis, I.O.; Silva, V.E.L.; Souto-Vieira, D.; Lozano, A.P.; Volpedo, A.V. & Fabré, N.N. 2020. Ecomorphological patterns in otoliths of tropical fishes: assessing trophic groups and depth strata preference by shape. Environmental Biology of Fishes, 103(4): 349-361. https://doi.org/10.1007/s10641-020-00961-0.

Avigliano, E.; Martinez, C.F.R. & Volpedo, A.V. 2014. Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fisheries Research, 149: 55‑60. https://doi.org/10.1016/j.fishres.2013.09.013.

Bezerra, B.; Silva, L.L.; Santos-Silva, C.M. & Carvalho, G.G. 2019. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theoretical and Applied Climatology, 135(1-2): 565-576. https://doi.org/10.1007/s00704-018-2396-6.

Bot Neto, R.L.; Carvalho, B.M.; Schwarz Júnior, R. & Spach, H.L. 2020. Ontogenetic variation in the sagitta otolith of Centropomus undecimalis (Actinopterygii: Perciformes: Centropomidae) in a tropical estuary. Acta Ichthyologica et Piscatoria, 50(4): 433-443. https://doi.org/10.3750/AIEP/03014.

Bot Neto, R.L.; Cattani, A.P.; Spach, H.L.; Contente, R.F.; Cardoso, O.R.; Marion, C. & Schwarz Júnior, R. 2023. Patterns in composition and occurrence of the fish fauna in shallow areas of the São Francisco River mouth. Biota Neotropica, 23(2):1-16, https://doi.org/10.1590/1676-0611-bn-2022-1387.

Brenha-Nunes, M.R.; Santificetur, C.; Conversani, V.R.M.; Giaretta, M.B.; Rossi-Wongtschowski, C.L.D.B. & Siliprandi, C.C. 2016. Atlas of marine bony fish otoliths (sagittae) of southeastern-southern Brazil Part IV: Perciformes (Centropomidae, Acropomatidae, Serranidae, Priacanthidae, Malacanthidae, Pomatomidae, Carangidae, Lutjanidae, Gerreidae and Haemulidae). Brazilian Journal of Oceanography, 64(Sp.1): 23-75. https://doi.org/10.1590/S1679-875920161100064(sp1).

Campana, S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188: 263-297. https://doi.org/10.3354/meps188263.

Carvalho, B.M.; Spach, H.L.; Vaz-dos-Santos, A.M. & Volpedo, A.V. 2019. Otolith shape index: is it a tool for trophic ecology studies? Journal of the Marine Biological Association of the United Kingdom, 99(7): 1675-1682. https://doi.org/10.1017/S0025315419000729.

Carvalho, B.M.; Volpedo, A.V. & Fávaro, L.F. 2020. Ontogenetic and sexual variation in the sagitta otolith of Menticirrhus americanus (Teleostei; Sciaenidae) (Linnaeus, 1758) in a subtropical environment. Papéis Avulsos de Zoologia, 60(9): 1-12, e20206009. https://doi.org/10.11606/1807-0205/2020.60.09.

Carvalho-Filho, A.; Oliveira, J.; Soares, C. & Araripe J. 2019. A new species of snook, Centropomus (Teleostei: Centropomidae), from northern South America, with notes on the geographic distribution of other species of the genus. Zootaxa, 4671: 81-92. https://doi.org/10.11646/zootaxa.4671.1.6.

Cruz, A. & Lombarte, A. 2004. Otolith size and its relationship with colour patterns and sound production. Journal of Fish Biology, 65(6): 1512‑1525. https://doi.org/10.1111/j.0022-1112.2004.00558.x.

Daros, F.A.; Spach, H.L. & Correia, A.T. 2016. Habitat residency and movement patterns of Centropomus parallelus juveniles in a subtropical estuarine complex. Journal of Fish Biology, 88(5): 1796-1810. https://doi.org/10.1111/jfb.12944.

Figueiredo, J.L. & Menezes, N.A. 1980. Manual de Peixes Marinhos do Sudeste do Brasil, III Teleostei (2), São Paulo, Museu de Zoologia, Universidade de São Paulo.

Figueiredo-Filho, J.M.; Marceniuk, A.P.; Feijó, A.; Siccha-Ramirez, R.; Ribeiro, G.S.; Oliveira, C. & Rosa, R.S. 2021. Taxonomy of Centropomus Lacépède, 1802 (Perciformes: Centropomidae), with focus on the Atlantic species of the genus. Zootaxa, 4942: 301-338. https://doi.org/10.11646/zootaxa.4942.3.1.

Freire, K.M.F.; Tubino, R.A.; Monteiro-Neto, C.; Andrade-Tubino, M.F.; Belruss, C.G.; Tomas, A.R.G.; Tutui, S.L.S.; Castro, P.M.G.; Maruyama, L.S.; Catella, A.C.; Crepaldi, D.V.; Daniel, C.R.A.; Machado, M.L.; Mendonça, J.T.; Moro, P.S.; Motta, F.S.; Ramires, M.; Silva, M.H.C. & Vieira, J. 2016. Brazilian recreational fisheries: current status, challenges and future Direction. Fisheries Management and Ecology, 23(2-3): 276-290. https://doi.org/10.1111/fme.12171.

Froese, R. & Pauly, D. 2023. FishBase. World Wide Web electronic publication. https://fishbase.org, version 08/2023.

Gagliano, M. & McCormick, M.I. 2004. Feeding history influence otolith shape in tropical fish. Marine Ecology Progress Series, 278: 291‑296. https://doi.org/10.3354/meps278291.

Gauldie, R.W. & Crampton, J.S. 2002. An eco-morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. Journal of Fish Biology, 60(5): 1204-1221. https://doi.org/10.1006/jfbi.2002.1938.

Granados-Amores, E.; Granados-Amores, J.; Zavala-Leal, O.I. & Flores-Ortega, J.R. 2020. Geometric morphometrics in the sulcus acusticus of the sagittae otolith as tool to discriminate species of the genus Centropomus (Centropomidae: Perciformes) from the southeastern Gulf of California. Marine Biodiversity, 50(1): 1-7. https://doi.org/10.1007/s12526-019-01030-1.

Hammer, O.; Harper, D.A.T. & Ryan, P.D. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 1‑9.

Heileman, S. 2009. XVI-53 East Brazil Shelf: LME #16. In: Sherman, K. & Hempel, G. (Eds.). The UNEP Large Marine Ecosystems Report: a perspective on changing conditions in LMEs of the world’s regional seas. Nairobi, UNEP Regional Seas Report and Studies, 182: 711-721.

Jaramillo, A.M.; Tombari, A.D.; Benedito Dura, V.; Rodrigo Santamalia, M. & Volpedo, A.V. 2014. Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas. Revista de Ciencias del Mar, 30(1): 57-66.

Junior, J.; Almeida, V.G. & Souza-Filho, J.J. 2007. Adaptação de juvenis selvagens de Centropomus undecimales (Bloch, 1792) (Pisces, Centropomidae) ao ambiente controlado. [Adaptation of wild juveniles of Centropomus undecimales (Bloch, 1792) (Pisces, Centropomidae) to the controlled environment.] Candombá-Revista Virtual, 3(1): 15-26.

Lira, A.S.; Frédou, F.L.; Viana, A.P.; Eduardo, L.N. & Frédou, T. 2017. Feeding ecology of Centropomus undecimalis (Bloch, 1792) and Centropomus parallelus (Poey, 1860) in two tropical estuaries in Northeastern Brazil. Pan-American Journal of Aquatic Sciences, 12: 123-135.

Mallat, S. 1991. Zero crossings of a wavelet transform. IEEE Transaction on Information Theory, 37(4): 1019-1033. https://doi.org/10.1109/18.86995.

Medeiros, R.; Oliveira, C.D.; Souto, D.; Rangely, J. & Fabré, N.N. 2021. Growth stanza in fish life history using otoliths shape: the protandric Centropomus case (Carangaria: Centropomidae). Neotropical Ichthyology, 19(4): 1-19, e200145. https://doi.org/10.1590/1982-0224-2020-0145.

Morissette, O. & Whitledge, G.W. 2022. Listening with the invasive fish ear: applications and innovations of otolith chemistry analysis in invasive fish biology. Environmental Biology of Fishes, 105: 1-17. https://doi.org/10.1007/s10641-022-01217-9.

Oliveira, J.C.; Aguiar, W.; Cirano, M.; Genz, F. & Amorim, F.N. 2018. A climatology of the annual cycle of river discharges into the Brazilian continental shelves: from seasonal to interannual variability. Environmental Earth Sciences, 77: 1-17. https://doi.org/10.1007/s12665-018-7349-y.

Ostini, S.; Oliveira, I.R.; Serralheiro, P.C.S. & Sanches, E.G. 2007. Criação do robalo-peva (Centropomus parallelus) submetido a diferentes densidades de estocagem. [Rearing of fat snook (Centropomus parallelus) at different stocking densities.] Revista Brasileira de Saúde e Produção Animal, 8(3): 250-257.

Parisi-Baradad, V.; Manjabacas, A.; Lombarte, A.; Olivella, R.; Chic, Ò.; Piera, J. & García-Ladona, E. 2010. Automatic taxon identification of teleost fishes in an otolith online database. Fisheries Research, 105: 13-20. https://doi.org/10.1016/j.fishres.2010.02.005.

Popper, A.N. & Fay, R.R. 2011. Rethinking sound detection by fishes. Hearing Research, 273: 25-36. https://doi.org/10.1016/j.heares.2009.12.023.

Rivas, L.R. 1986. Systematic review of the perciform fishes of the genus Centropomus. Copeia, (3): 579-611. https://doi.org/10.2307/1444940.

Sadighzadeh, Z.; Valinassa, T.; Vosugi, G.; Motallebi, A.A.; Fatemi, M.R.; Lombarte, A. & Tuset, V.M. 2014. Use of otolith shape for stock identification of John’s 74 snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fisheries Research, 155: 59-63. https://doi.org/10.1016/j.fishres.2014.02.024.

Schulz-Mirbach, T.; Ladich, F.; Plath, M. & Heb, M. 2019. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biological Reviews, 94(2): 457-482. https://doi.org/10.1111/brv.12463.

Stransky, C. & MacLellan, S.E. 2005. Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Canadian Journal of Fisheries and Aquatic Science, 62(10): 2265-2276. https://doi.org/10.1139/f05-143.

Tombari, A.D.; Volpedo, A.V. & Echeverria, D.D. 2005. Desarrollo de la sagitta en juveniles y adultos de Odontesthes argentinensis (Valenciennes, 1835) y O. bonariensis (Valenciennes, 1835) de la provincia de Buenos Aires, Argentina (Teleostei: Atheriniformes). Revista Chilena de História Natural, 78(4): 623‑633. https://doi.org/10.4067/S0716-078X2005000400003.

Torres, G.J.; Lombarte, A. & Morales-Nin, B. 2000. Variability of the sulcus acusticus in the sagitta otolith of the genus Merluccius (Merlucciidae). Fisheries Research, 46: 5‑13. https://doi.org/10.1016/S0165-7836(00)00128-4.

Tuset, V.M.; Imondi, R.; Aguado, G.; Otero-Ferrer, J.L.; Santschi, L.; Lombarte, A. & Love, M. 2015. Otolith Patterns of Rockfishes from the Northeastern Pacific. Journal of Morphology, 276(4): 458-469. https://doi.org/10.1002/jmor.20353.

Tuset, V.M.; Lombarte, A. & Assis, C.A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72(1): 7-198. https://doi.org/10.3989/scimar.2008.72s17.

Verocai, J.E.; Lombarte, A. & Norbis, W. 2023. Ontogenetic changes in sagitta otoliths of whitemouth croaker Micropogonias furnieri (Acanthuriformes: Sciaenidae) and its implication in acoustic communication. Animal Biology, 73(2): 195-211. https://doi.org/10.1163/15707563-bja10105.

Volpedo A.V. & Echeverría D.D. 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fisheries Research, 60(2-3): 551-560. https://doi.org/10.1016/S0165-7836(02)00170-4.

Volpedo, A.V.; Tombari, A.D. & Echeverría, D.D. 2008. Eco-morphological patterns of the sagitta of Antarctic fish. Polar Biology, 31(5): 635-640. https://doi.org/10.1007/s00300-007-0400-1.

Downloads

Published

2024-02-05

Issue

Section

Original Article

How to Cite

Carvalho, B. M. de, Bot Neto, R. L., Schwarz Júnior, R., Spach, H. L., & Volpedo, A. V. (2024). Otolith as a tool to differentiate juveniles of two species Centropomidae. Papéis Avulsos De Zoologia, 64, e202464007. https://doi.org/10.11606/1807-0205/2024.64.007

Funding data