Body size and wing shape as predictors of the initial flight acceleration in bats of the Brazilian Atlantic Forest
DOI:
https://doi.org/10.11606/1807-0205/2025.65.006Keywords:
Aspect ratio, Chiroptera, Flight performance, Wing morphologyAbstract
Bat body size and some aspects of the wing shape are considered efficient indicators of bat flight performance. Here, we evaluated how body size and wing shape can be predictors of initial flight acceleration (0-10 meters) in 15 bat species (3 families) occurring in the Atlantic Forest. Two body size variables (wingspan and body mass) and three wing shape variables (relative wing loading, aspect ratio and wing tip index) were taken from 74 individuals. We carried out flight experiments with another 59 individuals, to evaluate the Initial Flight Acceleration (IFA). We used generalized linear models (GLM) to evaluate which variables were the best predictors of initial flight acceleration. Furthermore, we tested the phylogenetic signal for initial flight acceleration, and the hypothesis of phylogenetic autocorrelation for this behavior was discarded (p > 0.05). Our results show that larger species with narrow wings need to develop greatest initial accelerations to take off flight. We suggest a morphological restriction on flight, since most bat species analyzed have low values in both variables and those that have high values are only in one of these variables.
Downloads
References
Akins, J.B.; Kennedy, M.L.; Schnell, G.D.; Sánchez-Hernández, C.; de Lourdes Romero-Almaraz, M.; Wooten, M.C. & Best, T.L. 2007. Flight speeds of three species of Neotropical bats: Glossophaga soricina, Natalus stramineus, and Carollia subrufa. Acta Chiropterologica, 9(2): 477-482. https://doi.org/10.3161/1733-5329(2007)9[477:FSOTSO]2.0.CO;2
Barquez, R.M.; Mares, M.A. & Braun, J.K. 1999. The bats of Argentina. Special Publications of the Museum of Texas Tech University, 42: 1-275. https://doi.org/10.5962/bhl.title.142628
Bininda‐Emonds, O.R.P. & Russell, A.P. 1994. Flight style in bats as predicted from wing morphometry: the effects of specimen preservation. Journal of Zoology, 234(2): 275-287. https://doi.org/10.1111/j.1469-7998.1994.tb06075.x
Blomberg, S.P.; Garland-Jr., T. & Ives, A.R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4): 717-745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Díaz, M.; Solari, S.; Aguirre, L.; Aguiar L. & Barquez, R. 2016. Clave de Identificación de los Murciélagos de Sudamérica. Buenos Aires, Programa de Conservación de los Murciélagos de Argentina.
Dawkins, R. 2021. Flights of fancy: defying gravity by design and evolution. Head of Zeus Ltd.
Fenton, M.B. & Simmons, N.B. 2014. Bats: a world of science and mystery. University of Chicago Press. https://doi.org/10.7208/chicago/9780226065267.001.0001
Fleming, T.H.; Hooper, E.T. & Wilson, D.E. 1972. Three Central American bat communitis: structure, reproductive cycles, and movement patterns. Ecology, 53(4): 555-569. https://doi.org/10.2307/1934771
Garbino, G.S.; Cláudio, V.C.; Gregorin, R.; Lima, I.P.; Loureiro, L.O.; Moras, L.M., Moratelli, R.; Nascimento, M.C.; Nogueira, M.R.; Novaes, R.L.M.; Pavan, A.C.; Tavares, V.C. & Peracchi, A.L. 2024. Updated checklist of bats (Mammalia: Chiroptera) from Brazil. Zoologia, Curitiba, 41: 1-16, e23073. https://doi.org/10.1590/s1984-4689.v41.e23073
Gardner, A.L. 2008. Mammals of South America, vol. 1, Marsupials, Xenarthrans, Schrews, and Bats. Chicago, The University of Chicago Press. https://doi.org/10.7208/chicago/9780226282428.001.0001
Hixon, S.; Brooks, A.; Miculka, B.; Richmond, C.; Warrendorf, D.; Whitmire, A.; Wilkins, B.; Lacher-Jr., T.E. & Woolley, J.B. 2012. Wing morphology, flights speeds and insights into niche structure in Caribbean bats from Dominica. Chiroptera Neotropical, 18(1): 1067-1073.
Hopkins, H.L.; Sánchez-Hernández; C.; de Lourdes Romero-Almaraz, M.; Gilley, L.M.; Schnell, G.D. & Kennedy, M.L. 2003. Flight speeds of four species of Neotropical bats. The Southwestern Naturalist, 48(4): 711-714. https://doi.org/10.1894/0038-4909(2003)048<0711:FSOFSO>2.0.CO;2
Kalcounis, M.C. & Brigham, R.M. 1995. Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Canadian Journal of Zoology, 73(1): 89-95. https://doi.org/10.1139/z95-011
Kennedy, M.L. & Best, T.L. 1972. Flight speed of the gray bat, Myotis grisescens. American Midland Naturalist, 88(1): 254-255. https://doi.org/10.2307/2424507
Kunz, T.H. & Pierson, E.D. 1994. An Introduction. Walker’s Bats of the World. In: Nowak, R.M. (Ed.). Bats of the World. Baltimore, Johns Hopkins University Press.
Marciente, R.; Bobrowiec, P.E.D. & Magnusson, W.E. 2015. Ground-vegetation clutter affects phyllostomid bat assemblage structure in lowland Amazonian forest. PLoS One, 10(6): e0129560. https://doi.org/10.1371/journal.pone.0129560
Marinello, M.M. & Bernard, E. 2014. Wing morphology of Neotropical bats: a quantitative and qualitative analysis with implications for habitat use. Canadian Journal of Zoology, 92(2): 141-147. https://doi.org/10.1139/cjz-2013-0127
Mayr, E. 1982. The growth of biological thought: Diversity, evolution, and inheritance. Cambridge, Mass., Harvard University Press.
Mazerolle, M.J. & Mazerolle, M.M.J. 2017. Package ‘AICcmodavg’. Avaiable: https://cran.r-project.org/web/packages/AICcmodavg. Access: 12/04/2020.
Miranda, J.M.D. & Zago, L. 2015. Assembleia de morcegos em remanescente de Floresta Ombrífila Mista no Planalto de Guarapuava, Paraná, Brasil. Mastozoología Neotropical, 22(1): 55-62.
Miranda, J.M.D.; Bernardi, I.P. & Passos, F.C. 2006. A new species of Eptesicus (Mammalia: Chiroptera: Vespertilionidae) from the Atlantic Forest, Brazil. Zootaxa, 1383: 57-68. https://doi.org/10.11646/zootaxa.1383.1.4
Miranda, J.M.D.; Brito, J.E.; Bernardi, I.P. & Passos, F.C. 2018. Bat assemblage of the Marumbi Peak State Park, Brazilian Atlantic rainforest. Mastozoología Neotropical, 25(2): 379-390. https://doi.org/10.31687/saremMN.18.25.2.0.24
Miranda, J.M.D.; Zago, L.; Pressinatte-Júnior, S.; Pereira, L.A.; Marchioro, S.; Bôlla, D.A.S. & Carvalho, F. 2019. Bat fauna (Mammalia, Chiroptera) from Guarapuava Highlands, Southerns Brazil. Oecologia Australis, 23(3): 562-574. https://doi.org/10.4257/oeco.2019.2303.14
Moratelli, R.; Perachi, A.L.; Dias, D. & Oliveira, J.A. 2011. Geographic variation in South American populations of Myotis nigricans (Schinz, 1821) (Chiroptera, Vespertilionidae), with the description of two new species. Mammalian Biology, 76(1): 592-607. https://doi.org/10.1016/j.mambio.2011.01.003.
Nakazawa, M. & Nakazawa, M.M. 2019. Package ‘fmsb’. Available: https://cran.r-project.org/web/packages/fmsb/fmsb. Access: 04/02/2021.
Norberg, U.M. 1994. Wing design, flight performance, and habitat use in bats. In: Wainwright, P.C. & Reilly, S.M. Ecological morphology: integrative organismal biology. University of Chicago Press. p. 205-239.
Norberg, U.M. 1998. Morphological adaptations for flight in bats. In: Kunz, T.H.; Racey, P.A. &Simmons, N.B. (Eds). Bat biology and conservation. Washington, Smithsonian Institution Scholarly Press. p. 93-108.
Norberg, U.M. & Rayner, J.M. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316(1179): 335-427. https://doi.org/10.1098/rstb.1987.0030
Norberg, U.M.; Brooke, A.P. & Trewhella, W.J. 2000. Soaring and non-soaring bats of the family Pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance. Journal of Experimental Biology, 203(3): 651-664. https://doi.org/10.1242/jeb.203.3.651
Paradis, E. & Schliep, K. 2019. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3): 526-528. https://doi.org/10.1093/bioinformatics/bty633
Pennell, M.W.; Eastman, J.M.; Slater, G.J.; Brown, J.W.; Uyeda, J.C.; FitzJohn, R.G. & Harmon, L.J. 2014. Geiger v2. 0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 30(15): 2216-2218. https://doi.org/10.1093/bioinformatics/btu181
R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Vienna, Computing. Available: http://www.R-project.org
Revell, L.J. & Revell, M.L.J. 2014. Package ‘phytools’. Available: https://cran.r-project.org/web/packages/phytools. Access: 03/05/2020.
Sadier, A.; Urban, D.J.; Anthwal, N.; Howenstine, A.O.; Sinha, I. & Sears, K.E. 2021. Making a bat: The developmental basis of bat evolution. Genetics and Molecular Biology, 43(1 Suppl. 2): 1-14, e20190146. https://doi.org/10.1590/1678-4685-gmb-2019-0146
Schutt-Jr., W.A. & Simmons, N.B. 2006. Quadrupedal bats: form, function, and evolution. In: Zubaid, A.; McCracken, G. Kunz, T.H. Functional and Evolutionary ecology of bats. New York, Oxford Academy. p. 145-159. https://doi.org/10.1093/oso/9780195154726.003.0008
Shi, J.J. & Rabosky, D.L. 2015. Speciation dynamics during the global radiation of extant bats. Evolution, 69(6): 1528-1545. https://doi.org/10.1111/evo.12681
Stockwell, E.F. 2001. Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae). Journal of Zoology, 254(4): 505-514. https://doi.org/10.1017/S0952836901001005
Swartz, S.M.; Freeman, P.W. & Stokwell, E.F. 2003. Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology. In: Kunz, T.H. & Fenton, M.B. (Eds.). Bat ecology. Chicago, The University of Chicago Press.
Trajano, E. 1984. Ecologia de populações de morcegos cavernícolas em uma região cárstica do sudeste do Brasil. Revista Brasileira de Zoologia, 2(5): 255-320. https://doi.org/10.1590/S0101-81751984000100001
Yi, X. & Latch, E.K. 2022. Systematics of the new world bats Eptesicus and Histiotus suggest trans-marine dispersal followed by Neotropical cryptic diversification. Molecular Phylogenetics and Evolution, 175: 1-14, e107582. https://doi.org/10.1016/j.ympev.2022.107582
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Papéis Avulsos de Zoologia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
Copyrights: The Authors. The journal is licensed under a Creative Commons attribution-type CC-BY.
How to Cite
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 1484985;1594922;1205701
