Biología y teoría psicoanalítica: de las matices de una afinidad controvertida a la adaptación epigenética

Autores/as

DOI:

https://doi.org/10.1590/0103-6564e230040

Palabras clave:

teoría psicoanalítica, teoría de la evolución, teoría neuronal

Resumen

A finales del siglo XIX, Freud se basó en la teoría neuronal para respaldar su modelo teórico del aparato mental. Sin embargo, debido a las restricciones de la neurobiología de la época, trasladó sus exploraciones teóricas al campo metapsicológico. A pesar de este cambio, los fundamentos neurobiológicos iniciales siguieron siendo influyentes en el desarrollo de su teoría de la mente, destacando especialmente la interacción entre factores hereditarios y ambientales en la diferenciación de las estructuras psíquicas. Freud creía que era a través de la interacción de los organismos con el medio ambiente/cultura, junto con la herencia biológica, que ocurría la diferenciación de las estructuras psíquicas, una visión que resuena con los principios lamarkianos rechazados por la biología de la época. Esta divergencia entre la biología y la teoría psicoanalítica, centrada en la adhesión de Freud a sus conceptos teóricos, señala un conflicto entre las disciplinas. Sin embargo, los desarrollos contemporáneos en biología, como la epigenética, pueden proporcionar una base para la reconciliación entre estos campos.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Adriano Junio Moreira de Souza, Universidade Federal do Tocantins

    Universidade Federal do Tocantins, Palmas, TO, Brasil.

Referencias

Anway, M. D., Cupp, A. S., Uzumcu, M., & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727), 1466-1469.

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 116(2), 281-297.

Bowlby, J. (1951). Maternal care and mental health (Vol. 2). Geneva: World Health Organization Geneva.

Bowlby, J. (1973). Attachment and loss, vol. II: Separation. New York: Basic Books.

Bowler, P. J. (1983). The eclipse of Darwinism: Anti-Darwinian evolution theories in the decades around 1900. Baltimore, Maryland,: Johns Hopkins University Press.

Braithwaite, E. C., Kundakovic, M., Ramchandani, P. G., Murphy, S. E., & Champagne, F. (2015). Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics, 10(5), 408-417.

Carone, B. R.; Fauquier, L.; Habib, N.; Shea, J. M.; Hart, C. E.; Li, R., . . . Zamore, P. D. (2010). Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. cell, 143(7), 1084-1096.

Čater, M., & Majdič, G. (2022). How early maternal deprivation changes the brain and behavior?. European Journal of Neuroscience, 55(9-10), 2058-2075.

Champagne, F. A.; Chretien, P.; Stevenson, C. W.; Zhang, T. Y.; Gratton, A., & Meaney, M. J. (2004). Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. Journal of Neuroscience, 24(17), 4113-4123.

Champagne, F. A.; & Curley, J. P. (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience & Biobehavioral Reviews, 33(4), 593-600.

Chen, Q.; Yan, M.; Cao, Z.; Li, X.; Zhang, Y.; Shi, J., . . . Zhang, Y. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science, 351(6271), 397-400.

Darwin, C. (2004). On the origin of species, 1859. London: Routledge.

Daxinger, L.; & Whitelaw, E. (2012). Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nature Reviews Genetics, 13(3), 153-162.

de Lamarck, J.-B. M. (1809). Philosophie zoologique, ou Exposition des considérations relatives à l’histoire naturelle des animaux. Paris: Dentu.

Dias, B. G.; & Ressler, K. J. (2014a). Experimental evidence needed to demonstrate inter‐and trans‐generational effects of ancestral experiences in mammals. Bioessays, 36(10), 919-923.

Dias, B. G.; & Ressler, K. J. (2014b). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89-96.

Flanagan, J. M.; & Wild, L. (2007). An epigenetic role for noncoding RNAs and intragenic DNA methylation. London: BioMed Central.

Francis, D. D.; & Meaney, M. J. (1999). Maternal care and the development of stress responses. Current opinion in neurobiology, 9(1), 128-134.

Franklin, T. B.; Russig, H.; Weiss, I. C.; Gräff, J.; Linder, N.; Michalon, A., . . . Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biological psychiatry, 68(5), 408-415.

Freud, S. (1999). A interpretação dos sonhos. Rio de Janeiro, RJ: Imago.

Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The Standard Edition of the Complete Psychological Works of Sigmund Freud (Vol. 1, pp. 283-397). London: Hogarth Press.

Freud, S. (1955). Beyond the pleasure principle. The Standard Edition of the complete psychologicalworks of Sigmund Freud, 18.

Freud, S. (2006). O ego e o id e outros trabalhos. Obras Completas. Rio de Janeiro, RJ: Imago.

Freud, S. (1915). Letter from Sigmund Freud to Karl Abraham, October 15, 1915. In J. Strachey (Ed. & Trans.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 15, pp. 339-342). London: Hogarth Press. (Original work published 1915).

Freud, S. (1878). Über den Bau der Spinalcord von Petromyzon Planeri. Zeitschrift für wissenschaftliche Zoologie, 30(1), 1-16.

Freud, S. (1925). A fictional addition to an autobiographical fact [Uma adição fictícia a um fato autobiográfico]. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud, Vol. XX (pp. 10-13). London: Hogarth Press. (Original work published 1918).

Freud, S. (1976). Obras Completas: Moisés e o monoteísmo, compêndio de psicanálise e outros textos (1937-1939). Rio de Janeiro, RJ: Imago.

Gamwell, L.; & Solms, M. (2006). Sigmund Freud’s neurological drawings and diagrams of the mind. New York: Binghamton University Art Museum, State University of New York.

Gapp, K.; Jawaid, A.; Sarkies, P.; Bohacek, J.; Pelczar, P.; Prados, J., . . . Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17(5), 667-669.

Gershenowitz, H. (1979). The influence of Lamarckism on the development of Freud’s psychoanalytic theory. Indian Journal of History of Science Calcutta, 14(2), 105-113.

Glucksman, M. L. (2016). Freud’s “Project”: The Mind-Brain Connection Revisited. Psychodynamic psychiatry, 44(1), 69-90.

Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., . . . Hallett, M. (2015). Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science, 350(6261), aab2006.

Greer, E. L.; Maures, T. J.; Ucar, D.; Hauswirth, A. G.; Mancini, E.; Lim, J. P., . . . Brunet, A. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 479(7373), 365-371.

Hofer, M. A. (2014). The emerging synthesis of development and evolution: A new biology for psychoanalysis. Neuropsychoanalysis, 16(1), 3-22.

Huxley, J. (1942). Evolution. The Modern Synthesis.

Jablonka, E.; & Lamb, M. (1999). Epigenetic inheritance and evolution: Lamarckian Dimension. Oxford: Oxford University Press.

Jablonka, E.; Lamb, M. J.; & Avitai, E. (1998). ‘Lamarckian’mechanisms in Darwinian evolution. Trends in Ecology & Evolution, 13(5), 206-210.

Jones, E. (1953). The life and work of Sigmund Freud. Vol. 1. 1856-1900. The formative years and the great discoveries.

Jones, E. (1955). The life and work of Sigmund Freud. Vol. 2. Years of maturity. 1901-1919.

Jones, E. (1957). Sigmund Freud, life and work. Vol. 3. The Last Phase. Basic Books.

Kandel, E. R. (1998). A new intellectual framework for psychiatry. American Journal of Psychiatry, 155(4), 457-469.

Kandel, E. R. (1999). Biology and the future of psychoanalysis: a new intellectual framework for psychiatry revisited. American Journal of Psychiatry, 156(4), 505-524.

Kandel, E. R. (2001). Nobel Lecture: the molecular biology of memory storage: a dialog between genes and synapses. Bioscience reports, 21, 565-611.

Kandel, E. R. (2007). In search of memory: The emergence of a new science of mind. New York: WW Norton & Company.

Kandel, E. R. (2008). Psychiatry, psychoanalysis, and the new biology of mind. Arlington,: American Psychiatric Pub.

Kosten, T. A.; & Nielsen, D. A. (2014). Litter and sex effects on maternal behavior and DNA methylation of the Nr3c1 exon 17 promoter gene in hippocampus and cerebellum. International Journal of Developmental Neuroscience, 36, 5-12.

Levenson, J. M.; & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6(2), 108-118.

Marcaggi, G.; & Guénolé, F. (2018). Freudarwin: Evolutionary thinking as a root of psychoanalysis. Frontiers in psychology, 9, 892.

McClintock, B. (1953). Induction of instability at selected loci in maize. Genetics, 38(6), 579.

McGowan, P. O.; Suderman, M.; Sasaki, A.; Huang, T. C.; Hallett, M.; Meaney, M. J.; & Szyf, M. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PloS one, 6(2), e14739.

McGowan, P. O.; & Szyf, M. (2010). The epigenetics of social adversity in early life: implications for mental health outcomes. Neurobiology of disease, 39(1), 66-72.

Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24(1), 1161-1192.

Meaney, M. J.; & Szyf, M. (2022). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues in clinical neuroscience.

Mohammad, F.; Pandey, G. K.; Mondal, T.; Enroth, S.; Redrup, L.; Gyllensten, U.; & Kanduri, C. (2012). Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development, 139(15), 2792-2803.

Morgan, C. P.; & Bale, T. L. (2011). Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. Journal of Neuroscience, 31(33), 11748-11755.

Nestler, E. J.; Peña, C. J.; Kundakovic, M.; Mitchell, A.; & Akbarian, S. (2016). Epigenetic basis of mental illness. The Neuroscientist, 22(5), 447-463.

Öst, A.; Lempradl, A.; Casas, E.; Weigert, M.; Tiko, T.; Deniz, M., . . . Stoeckius, M. (2014). Paternal diet defines offspring chromatin state and intergenerational obesity. cell, 159(6), 1352-1364.

Pembrey, M. E.; Bygren, L. O.; Kaati, G.; Edvinsson, S.; Northstone, K.; Sjöström, M., & Golding, J. (2006). Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics, 14(2), 159-166.

Radford, E. J.; Ito, M.; Shi, H.; Corish, J. A.; Yamazawa, K.; Isganaitis, E., . . . Erkek, S. (2014). In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science, 345(6198), e1255903.

Rakyan, V. K.; Chong, S.; Champ, M. E.; Cuthbert, P. C.; Morgan, H. D., Luu, K. V., & Whitelaw, E. (2003). Transgenerational inheritance of epigenetic states at the murine Axin Fu allele occurs after maternal and paternal transmission. Proceedings of the National Academy of Sciences, 100(5), 2538-2543.

Ritvo, L. B. (1965). Darwin as the source of Freud’s neo-Lamarckianism. Journal of the American Psychoanalytic Association, 13(3), 499-517.

Ritvo, L. B. (1974). The impact of Darwin on Freud. The Psychoanalytic Quarterly, 43(2), 177-192.

Siklenka, K., Erkek, S., Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., ... & Kimmins, S. (2015). Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science, 350(6261), eaab2006.

Solms, M.; & Panksepp, J. (2012). The “Id” knows more than the “Ego” admits: Neuropsychoanalytic and primal consciousness perspectives on the interface between affective and cognitive neuroscience. Brain Sciences, 2(2), 147-175.

Solms, M. (2020). New project for a scientific psychology: General scheme. Neuropsychoanalysis, 22(1-2), 5-35.

Sulloway, F. J. (1992). Freud, biologist of the mind: Beyond the psychoanalytic legend. New Heaven: Harvard University Press.

Szyf, M. (2015). Nongenetic inheritance and transgenerational epigenetics. Trends in molecular medicine, 21(2), 134-144.

Szyf, M. (2022). The epigenetics of perinatal stress. Dialogues in clinical neuroscience.

Tansey, E. (1997). Not committing barbarisms: Sherrington and the synapse, 1897. Brain research bulletin, 44(3), 211-212.

Waddington, C. H. (1959). Canalization of development and genetic assimilation of acquired characters. Nature, 183, 1654-1655.

Walsh, J. B. (1996). Epigenetic inheritance and evolution: The Lamarckian Dimension. Evolution, 50(5), 2115-2119.

Weaver, I. C.; Cervoni, N.; Champagne, F. A.; D’Alessio, A. C.; Sharma, S.; Seckl, J. R.; . . . Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature neuroscience, 7(8), 847-854.

Wollheim, R. (1971). Freud. London: Fontana Press.

Publicado

2025-04-09

Número

Sección

Artículos

Cómo citar

Biología y teoría psicoanalítica: de las matices de una afinidad controvertida a la adaptación epigenética. (2025). Psicologia USP, 36, e230040. https://doi.org/10.1590/0103-6564e230040