Social Science Computing and Content Analysis: reflections based on Latin American production

Authors

DOI:

https://doi.org/10.14201/reb20231021151167

Keywords:

Social Science Computing, Content Analysis, Latin America, ext as Data, PLN

Abstract

Social Science Computing (SSC) emerged as a hybrid field formed by the intersection of Social and Computer Sciences, and which develops itself through researchers’ ability to analyze computers and the exponential growth of digital data’s expansion, as well as research based on agent-based computer simulations. In this sense, several themes, areas and methodologies of the humanities have been impacted. In this context, the study of social/political objects based on human communication with Content Analysis is one of the potential fields. Despite not being a recent method, researchers and content analysts deal with research difficulties and limitations caused by subjectivity and replicability of these studies and have seen automation through computers as an overcoming of this issue. Thus, we seek to identify how the incorporation of a traditional methodology by the SSC took place in Latin America, seeking to investigate how social scientists are operationalizing the theoretical-epistemological transitions in this still developing field. For that, we performed a scientometric analysis of articles published by institutions and researchers in the region and the data demonstrate a bibliography composed of more traditional authors from the humanities, but with a strong Computer Science techniques methodological incorporation. 

Downloads

Download data is not yet available.

Author Biographies

  • Gleidylucy Oliveira, Universidade Federal de São Carlos

    Adjunct Professor at Universidade Federal de São Carlos (UFSCar, Brazil).

  • Rafael Cardoso Sampaio, Universidade Federal do Paraná

    Adjunct Professor at the Department of Political Science of Universidade Federal do Paraná (UFPR, Brazil).

References

Bardin, L. (2008). Análise de conteúdo. Lisboa: Edições 70.

Benoit, K. (2020). Text as Data: an overview. In L. Curini, & R. Franzese. The SAGE Handbook of Research Methods in Political Science and IR. Londres: Sage Publications.

Blei, D. M., Ng., A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. The Journal of Machine Learning Research, 3, 993-1022.

Bourdieu, P. (1989). O poder simbólico. Lisboa/Rio de Janeiro: Difel/Bertrand Brasil.

Camargo, B. V., & Justo, A. M. (2013). Tutorial para uso do software IRaMuTeQ (Interface de R pour les Analyses Multidimensionnelles de Textes et de Questionnaires). Florianópolis: Laboratório de Psicologia Social da Comunicação e Cognição – UFSC.

Cioffi-Revilla, C. (2017). Introduction to Computational Social Science: Principles and Applications. Londres: Springer.

Conte, R. et al. (2012). Manifesto of computational social science. The European Physical Journal Special Topics, 214, 325-346.

Cúrcio, V. R. (2006). Estudos estatísticos de textos literários. Revista Texto Digital, 2(2), 9-28.

Eck, N. J. van, & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.

Edelman, A., Wolff, T., Montagne, D., & Bail, C. A. (2020). Computational Social Science and Sociology. Annual Review of Sociology, 46, 61-81.

Feng, G. (2014). Intercoder reliability indices: disuse, misuse, and abuse. Quality & Quantity, 48, 1803-1815.

Grácio, M. C. C. (2020). Análises relacionais de citação para a identificação de domínios científicos. São Paulo: Cultura Acadêmica.

Grimmer, J., & Stewart, B. M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, 21(3), 267-297.

Grimmer, J; Roberts, & M. Stewart, B.M. (2021). Machine Learning for Social Science: An Agnostic Approach. Annual Review of Political Science, 24, 395-419

Grimmer, J., Roberts, M. E., & Stewart, B. M. (2022). Text as Data. Princenton: Princenton University Press.

Habermas, J. (1984). A mudança estrutural da esfera pública. Rio de Janeiro: Tempo Universitário.

Hayes, A. & Krippendorff, K. (2007). Answering the call for a standard reliability measure for coding data. Communication methods and measures, 1(1), 77-89.

Izumi, M., & Moreira, D. (2018). O texto como dado: desafios e oportunidades para as ciências sociais. BIB - Revista Brasileira de Informação Bibliográfica em Ciências Sociais, 86, 138-174.

Kolbe, R. H., & Burnett, M. S. (1991). Content-analysis research: an examination of applications with directives for improving research reliability and objectivity. Journal of Consumer Research, 18(2), 243-250.

Krippendorff, K. (2004). Content Analysis: an introduction to its methodology. SAGE Publications.

Lasswell, H. (1978). A estrutura e a função da comunicação na sociedade. In G. Cohn (Org.). Comunicação e indústria cultural. São Paulo: Cia Editora Nacional.

Lazer, D. et al. (2009). Computational Social Science. Science, 323(5915), 721-723.

Lazer, D. et al. (2020). Computational social science: Obstacles and opportunities. Science, 369(6507), 1060-1062.

Lebart, L., & Salem, A. (1994). Statistique textuelle. Paris: Dunod.

Lima, J. Á. (2013). Por uma Análise de Conteúdo mais fiável. Revista Portuguesa de Pedagogia, 47(1), 7-29.

Lipman, W. (2008). Opinião pública. Petrópolis: Vozes.

Moreira, D., Pires, A., & Medeiros, M. A. (2022). Do ‘texto como texto’ ao ‘texto como dado’: o potencial das pesquisas em Relações Internacionais. Revista de Sociologia e Política, 30, 1-29.

Moraes, R., & Galiazzi, M. C. (2006). Análise textual discursiva: processo reconstrutivo de múltiplas faces. Ciência & Educação (Bauru), 12, 117-128.

Neuendorf, K. A. (2017). The Content Analysis: guidebook. Thousand Oaks: Sage Publications.

Salganik, M. (2018). Bit by bit: social research in digital age. Nova Jersey: Princeton University Press.

Sampaio, R. C., & Lycarião, D. (2021). Análise de Conteúdo Categorial: manual de aplicação. Brasília, DF: ENAP. Recuperado em 4 de janeiro de 2023, de https://repositorio.enap.gov.br/bitstream/1/6542/1/Analise_de_conteudo_categorial_final.pdf.

Sampaio, R. C., Lycarião, D., Codato, A. N., Marioto, D. J. F., Bittencourt, M., Nichols, B. W., & Sanchez, C. S. (2022). Mapeamento e reflexões sobre o uso da análise de conteúdo na SciELO-Brasil (2002-2019). New Trends in Qualitative Research, 15, e747-e747.

Sartori, G. (1998). Homo Videns: la sociedad teledirigida. Rio de Janeiro: Taurus.

Tennant, J. P. (2020). Web of Science and Scopus are not global databases of knowledge. European Science Editing, 46, e51987.

Zhou, ZH. (2021). Machine Learning. Springer Nature Singapure.

Published

2023-10-03

How to Cite

Social Science Computing and Content Analysis: reflections based on Latin American production. (2023). Revista De Estudios Brasileños, 10(21), 151-167. https://doi.org/10.14201/reb20231021151167