Evolutionary aspects of the alternative splincing

Authors

  • Barbara Mizumo Tomotani Departamento de Fisiologia, Instituto de Biociências, USP

DOI:

https://doi.org/10.11606/issn.1984-5154.v4p44-49

Keywords:

Alternative splicing, exons, EST, diversity.

Abstract

The eukaryotes present intricate mechanisms to control gene expression, as alternative splicing. This mechanism is abundant in these organisms and permits the prodution of different proteins from a single percursor. This revision intends to show how alternative splicing can be an interesting tool in studies of evolution, comprising how the mechanism appeared and how it acts in the diversification of organisms.

Downloads

Download data is not yet available.

References

Abril, J. F., Castelo, R., Guigó, R. (2005). Comparison of splice sites in mammals and chicken. Genome Research. 15(1), 111-119.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2002). Biologia Molecular da Célula (4a Ed.). Editora Artes Médicas, Porto Alegre, RS.

Ast, G. (2004). How did alternative splicing evolve? Nature Review Genetics. 5(10), 773-782.

Blencowe, B.J. (2006). Alternative splicing: New insights from global analysis. Cell. 126(1), 37-47.

Boue,S., Letunic, I., Bork, P. (2003). Alternative splicing and evolution. Bioessays. 25(11), 1031-1034.

Burge, C., Tuschl, T., Sharp, P.A. (1999). Splicing of precursors to mRNAs by the spliceosomes. P. 525-529. In: Gesteland, R.F.; Cech, T.R.; Atkins, J.F. (eds). 1999. The RNA World, Cold Spring Harbor Press, New York.

Brett, D., Pospisil, H., Valcárcel, J., Reich, J., Bork, P. (2002). Alternative splicing and genome complexity. Nature Genetics. 30(1), 29 – 30.

Copley, R.R. (2008). The animal in the genome: comparative genomics and evolution. Philosophical Transactions of The Royal Society. 363(1496), 1453-1461.

Ferreira, E.N., Galante, P.A.F., Carraro, D.M., de Souza, S.J. (2007). Alternative splicing: a bioinformatics perspective Molecular bioSystems 3(7), 473-477.

Herbert, A. e Rich, A. (1999). RNA processing and the evolution of eukaryotes. Nature Genetics. 21(3), 265-269.

Harrington, E.D., Boue, S., Valcarcel, J., Reich, J.G., Bork, P. (2004). Estimating rates of alternative splicing in mammals and invertebrates. Nature Genetics. 36(9), 915–916; author reply, 916–917.

Irrina, M., Rukov, J.L., Roy, S.W., Vinther, J., Garcia-Fernandez, J. (2009). Quantitative regulation of alternative splicing in evolution and development. Bioessays. 31(1), 40-50.

Johnson, J.M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P.M., Armour, C.D., Santos, R., Schdat, S.E., Stoughton, R., Shoemaker, D.D. (2003). Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302(5653), 2141-2144.

Kim, H., Majewski, R.K.J., Ott, J. (2004). Estimating rates of alternative splicing in mammals and invertebrates.Nature Genetics. 36(9), 915 – 916; author reply, 916-917.

Kim, E., Goren, A., Ast, G. (2007a). Alternative splicing: current perspectives. BioEssays. 30(1), 38-47.

Kim, E., Magen, A., Ast, G. (2007b). Different levels of alternative splicing among eukaryotes. Nucleic Acids Research. 35(1), 125–131.

Kondrashov, F.A., Koonin, E.V. (2003). Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences. Trends in genetics. 19(3),115-119.

Lareau, L.F., Green, R.E., Bhatnagar, R.S., Brenner, S.E. (2004). The evolving roles of alternative splicing. Current Opinion in Structural Biology.14(3), 273–282.

Letunic, I., Copley, R.R., Bork, P. (2002). Common exon duplication in animals and its role in alternative splicing. Human Molecular Genetics. 11(13), 1561–1567.

Lev-Maor, G., Goren, A., Sela, N., Kim, E., Keren, H., Doron-Faigenboim, A., Leibman-Barak, S., Pupko, T., Ast, G. (2007). The “alternative” choice of constitutive exons throughout evolution. Plos Genetics. 3(11), e203.

Liu, C., Bai, B., Skogerbø, G., Cai, L., Deng, W., Zhang, Y., Bu, D., Zhao, Y., Chen, R. (2005). NONCODE: an integrated knowledge database of non-coding RNAs Nucleic Acid Research. 33(database issue), D112-D115.

Modrek, B. e Lee, C.J. (2002). A genomic view of alternative splicing. Nature Genetics. 30(1), 13-19.

Modrek, B. e Lee, C.J. (2003). Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nature Genetics. 34(2), 177-180.

Sharp, P.A. (2009). The Centrality of RNA. Cell, 136(4), 577- 580.

Su, Z., Wang, J.,Yu,J., Huang, X., Gu, X. (2006). Evolution of alternative splicing after gene duplication. Genome Research. 16(2), 182-189.

Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G.P., Burge, C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature. 456(7221), 470-476.

Xing, Y., Lee, C. (2005). Evidence of functional selection pressure for alternative splicing events that accelerate evolution of protein subsequences. PNAS. 102(38), 13526–13531.

Xing, Y., Lee, C. (2006). Alternative splicing and RNA selection pressure-evolutionary consequences for eukaryotic genomes. Nature Reviews Genetics. 7(7), 499-509.

Zhang, X.H.F. e Chasin, L.A. (2006). Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons. PNAS. 103(36), 13427–13432.

Published

2010-04-15

How to Cite

Tomotani, B. M. (2010). Evolutionary aspects of the alternative splincing. Revista Da Biologia, 4(1), 44-49. https://doi.org/10.11606/issn.1984-5154.v4p44-49