Análise do DNA de toque no contexto forense: vantagens e limitações

Autores

DOI:

https://doi.org/10.11606/issn.2317-2770.v29i2e-232173

Palavras-chave:

DNA de toque, Genética Forense, Repetições de Microssatélites, Perfil Genético, Polimorfismo Genético

Resumo

O avanço das técnicas de Genética Forense tornou viável a análise de amostras contendo baixa qualidade e quantidade de DNA, gerando perfis genéticos formados por marcadores do tipo STR autossômicos. Dentre as amostras com essas características há o DNA de toque, o qual se refere ao material genético depositado via contato com uma superfície ou objeto. Sua análise é especialmente relevante na presença de impressões digitais com reduzida integridade e baixo nível de detalhamento, que impossibilita a avaliação por meio da papiloscopia. A transferência do DNA de toque pode ocorrer diretamente (i.e. transferência primária), resultante do contato direto entre depositor e superfície, ou indiretamente (i.e. transferência secundária), a qual envolve um vetor intermediário. A transferência secundária pode dificultar a interpretação dos perfis genéticos, uma vez que frequentemente resulta em misturas de DNA de múltiplos indivíduos. Diversos fatores podem influenciar a deposição do DNA de toque, como o shedder status, correspondente à variação interindividual, que pode ser afetado por idade, sexo, doenças de pele e hábitos pessoais. Ademais, variáveis como o tipo de superfície, o tempo decorrido desde a higienização das mãos e a natureza do contato também podem influenciar na deposição e recuperação do DNA de toque. A origem do DNA depositado pode incluir células da pele das mãos, além de material genético advindo de outras regiões do corpo, como fluidos corporais (e.g. sebo e saliva). Pesquisas nessa área ressaltam a importância de compreender as variáveis que afetam a deposição e recuperação do DNA de toque, visando aprimorar as práticas forenses e a interpretação dos resultados obtidos para auxiliar as investigações criminais.

Downloads

Biografia do Autor

  • Cintia Fridman, Universidade de São Paulo. Faculdade de Medicina

    Graduação em Ciências Biológicas pelo Instituto de Biociências - USP (1991), mestrado em Biologia/Genética pelo Instituto de Biociências - USP (1995), doutorado em Biologia / Genética pelo Instituto de Biociências - USP (1999) e Pós Doutorado pelo Instituto de Biociências - USP (2001), trabalahndo com Síndrome de Prader-Willi e Angelman. Possui Pós-Doutorado no Instituto de Psiquiatria - Fac. Medicina USP (2003) trabalhando com genética de doenças psiquiátricas. Atualmente é Professor Associado da Universidade de São Paulo, no Departamento de Medicina Legal da FMUSP. Tem experiência na área de Genética, com ênfase em Genética Humana e Médica e Genética Forense, atuando principalmente nos seguintes temas: identificação humana, DNA mitocondrial, SNP, ancestralidade genética, síndrome de Angelman, síndrome de Prader-Willi, cromossomo 15, dissomia uniparental e polimorfismo. 

Referências

Morgan RM. Forensic science. The importance of identity in theory and practice. Forensic Sci Int Synerg. 2019;1:239-42. DOI: https://doi.org/10.1016/j.fsisyn.2019.09.001

Brettell TA, Butler JM, Almirall JR. Forensic science. Anal Chem. 2011;83(12):4539-56. DOI: https://doi.org/10.1021/ac201075e

Jobling MA, Gill P. Encoded evidence: DNA in forensic analysis. Nat Rev Genet. 2004;5(10):739-51. DOI: https://doi.org/10.1038/nrg1455

Butler JM. Advanced Topics in Forensic DNA Typing: Methodology. 1st ed. San Diego: Elsevier Academic Press; 2011.

Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952;36(1):39-56. DOI: https://doi.org/10.1085/jgp.36.1.39

Watson JD, Crick FH. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737-8. DOI: https://doi.org/10.1038/171737a0

Jeffreys AJ, Wilson V, Thein, SL. Individual-specific 'fingerprints' of human DNA. Nature. 1985;316(6023):76-9. DOI: https://doi.org/10.1038/316076a0

Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA 'fingerprints'. Nature. 1985;318(6046):577-9. DOI: https://doi.org/10.1038/318577a0

Napper R. A National DNA Database the United Kingdom Experience. AJFS. 2000;32(2):65-9. DOI: https://doi.org/10.1080/00450610009410799

Mcinnes RR. Thompson & Thompson Genética Médica. 8ª ed. Rio de Janeiro: Grupo GEN; 2016.

Wickenheiser RA. Trace DNA: a review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. J Forensic Sci. 2002;47(3):442-50. DOI: https://doi.org/10.1520/JFS15284J

U.S. Department of Justice. Office of Justice Programs. The future of forensic DNA testing: predictions of the Research and Development Working Group. Washington, DC: National Institute of Justice. 2000 nov.; p. 1-79.

Brasil. Ministério da Justiça e Segurança Pública. XX Relatório da Rede Integrada de Bancos de Perfis Genéticos (RIBPG). Este relatório apresenta os resultados consolidados até 28 de maio de 2024. 2024 mai; p. 2-58.

da Silva Junior RC, Wirz LN, Reyes ES, Del Moral Stevenel MA. Development of DNA databases in Latin America. Forensic Sci Int. 2020;316:110540. DOI: https://doi.org/10.1016/j.forsciint.2020.110540

van Oorschot RA, Jones MK. DNA fingerprints from fingerprints. Nature. 1997;387(6635):767. DOI: https://doi.org/10.1038/42838

Jansson L, Swensson M, Gifvars E, Hedell R, Forsberg C, Ansell R, Hedman J. Individual shedder status and the origin of touch DNA. Forensic Sci Int Genet. 2022;56:102626. DOI: https://doi.org/10.1016/j.fsigen.2021.102626

Oleiwi AA, Morris MR, Schmerer WM, Sutton R. The relative DNA-shedding propensity of the palm and finger surfaces. Sci Justice. 2015;55(5):329-34. DOI: https://doi.org/10.1016/j.scijus.2015.04.003

Di Nunzio M, Rodríguez-Lozoya AM, De Alcaraz-Fossoul J, Barrot-Feixat C. A customized protocol to generate STR profiles from latent fingerprints. Forensic Sci Int Genet Suppl Ser. 2022;8:326-9. DOI: https://doi.org/10.1016/j.fsigss.2022.10.078

Hefetz I, Einot N, Faerman M, Horowitz M, Almog J. Touch DNA: The effect of the deposition pressure on the quality of latent fingermarks and STR profiles. Forensic Sci Int Genet. 2019;38:105-12. DOI: https://doi.org/10.1016/j.fsigen.2018.10.016

Lee H, Yim J, Eom YB. Effects of fingerprint development reagents on subsequent DNA analysis. Electrophoresis. 2019;40(14):1824-9. DOI: https://doi.org/10.1002/elps.201800496

Romano CG, Mangiaracina R, Donato L, D’Angelo R, Scimone C, Sidoti A. Aged fingerprints for DNA profile: First report of successful typing. Forensic Sci Int. 2019;302:109905. DOI: https://doi.org/10.1016/j.forsciint.2019.109905

Subhani Z, Daniel B, Frascione N. DNA Profiles from fingerprint lifts- enhancing the evidential value of fingermarks through successful DNA typing. J Forensic Sci. 2019;64(1):201-6. DOI: https://doi.org/10.1111/1556-4029.13830

Cornwell SJ, Tay JW, Allan RK, Zoranjic J, O'Rourke NJ, Byard GB, Rye MS. Evaluation of DNA extraction methods for processing fingerprint powder-coated forensic evidence. J Forensic Sci. 2020;65(3):960-5. DOI: https://doi.org/10.1111/1556-4029.14233

Fieldhouse S, Parsons R, Bleay S, Walton-Williams L. The effect of DNA recovery on the subsequent quality of latent fingermarks: A pseudo-operational trial. Forensic Sci Int. 2020;307:110076. DOI: https://doi.org/10.1016/j.forsciint.2019.110076

Harush-Brosh Y, Mayuoni-Kirshenbaum L, Mashiach Y, Hauzer M, Hefetz I, Bengiat R, Levin-Elad M, Faerman M. An efficient and eco-friendly workflow for dual fingermark processing and STR profiling. Forensic Sci Int Genet. 2020;47:102310. DOI: https://doi.org/10.1016/j.fsigen.2020.102310

Bathrick AS, Norsworthy S, Plaza DT, McCormick MN, Slack D, Ramotowski RS. DNA recovery after sequential processing of latent fingerprints on copy paper. J Forensic Sci. 2022;67(1):149-60. DOI: https://doi.org/10.1111/1556-4029.14881

Menchhoff SI, Solomon AD, Cox JO, Hytinen ME, Miller MT, Cruz TD. Effects of storage time on DNA profiling success from archived latent fingerprint samples using an optimised workflow. Forensic Sci Res. 2020;7(1):61-8. DOI: https://doi.org/10.1080/20961790.2020.1792079

Ruprecht R, Suter R, Manganelli M, Wehrli A, Ender M, Jung B. Collection of evidence from the reverse side of self-adhesive stamps: A combined approach to obtain dactyloscopic and DNA evidence. Forensic Sci Int. 2022;330:111123. DOI: https://doi.org/10.1016/j.forsciint.2021.111123

Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg. 2022;6:100311. DOI: https://doi.org/10.1016/j.fsisyn.2022.100311

Verdon TJ, Mitchell RJ, van Oorschot RA. The influence of substrate on DNA transfer and extraction efficiency. Forensic Sci Int Genet. 2013;7(1):167-75. DOI: https://doi.org/10.1016/j.fsigen.2012.09.004

Hughes DA, Szkuta B, van Oorschot RAH, Yang W, Conlan XA. Impact of surface roughness on the deposition of saliva and fingerprint residue on non-porous substrates. Forensic Chem. 2021;23:100318. DOI: https://doi.org/10.1016/j.forc.2021.100318

Hughes DA, Szkuta B, Oorschot RAHV, Conlan XA. How changes to the substrate's physical characteristics can influence the deposition of touch and salivary deposits. Forensic Sci Int. 2023;343:111546. DOI: https://doi.org/10.1016/j.forsciint.2022.111546

Fonneløp AE, Egeland T, Gill P. Secondary and subsequent DNA transfer during criminal investigation. Forensic Sci Int Genet. 2015;17:155-62. DOI: https://doi.org/10.1016/j.fsigen.2015.05.009

Gosch A, Courts C. On DNA transfer: The lack and difficulty of systematic research and how to do it better. Forensic Sci Int Genet. 2019;40:24-36. DOI: https://doi.org/10.1016/j.fsigen.2019.01.012

Atkinson K, Arsenault H, Taylor C, Volgin L, Millman J. Transfer and persistence of DNA on items routinely encountered in forensic casework following habitual and short-duration one-time use. Forensic Sci Int Genet. 2022;60:102737. DOI: https://doi.org/10.1016/j.fsigen.2022.102737

McCrane SM, Mulligan CJ. An innovative transfer DNA experimental design and qPCR assay: Protocol and pilot study. J Forensic Sci. 2023;68(3):990-1000. DOI: https://doi.org/10.1111/1556-4029.15243

Sessa F, Pomara C, Esposito M, Grassi P, Cocimano G, Salerno M. Indirect DNA Transfer and Forensic Implications: A Literature Review. Genes (Basel). 2023;14(12):2153. DOI: https://doi.org/10.3390/genes14122153

Prinz M, Schiffner L, Sebestyen JA, Bajda E, Tamariz J, Schaler RC, Baum H, Caragine T. Maximization of STR DNA typing success for touched objects. Int Congr Ser. 2006;1288:651-3. DOI: https://doi.org/10.1016/j.ics.2005.10.051

Staiti N, Romano C, Trapani C, Ginestra E, Leo B, Schiavone S. Analysis of LCN DNA from synthetic ropes: A practical approach used in real homicide investigation. Forensic Sci Int Genet Suppl Ser. 2008;1(1):446-7. DOI: https://doi.org/10.1016/j.fsigss.2007.10.181

Tokutomi T, Takada Y, Kanetake J, Mukaida M. Identification using DNA from skin contact: case reports. Leg Med (Tokyo). 2009;11(Suppl 1):S576-7. DOI: https://doi.org/10.1016/j.legalmed.2009.02.004

Fonneløp AE, Ramse M, Egeland T, Gill P. The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Sci Int Genet. 2017;29:48-60. DOI: https://doi.org/10.1016/j.fsigen.2017.03.019

Goray M, Eken E, Mitchell RJ, van Oorschot RA. Secondary DNA transfer of biological substances under varying test conditions. Forensic Sci Int Genet. 2010;4(2):62-7. DOI: https://doi.org/10.1016/j.fsigen.2009.05.001

Warshauer DH, Marshall P, Kelley S, King J, Budowle B. An evaluation of the transfer of saliva-derived DNA. Int J Legal Med. 2012;126(6):851-61. DOI: https://doi.org/10.1007/s00414-012-0743-1

Manoli P, Antoniou A, Bashiardes E, Xenophontos S, Photiades M, Stribley V, Mylona M, Demetriou C, Cariolou MA. Sex-specific age association with primary DNA transfer. Int J Legal Med. 2016;130(1):103-12. DOI: https://doi.org/10.1007/s00414-015-1291-2

Burrill J, Daniel BE, Frascione N. A review of trace “Touch DNA” deposits: variability factors and an exploration of cellular composition. Forensic Sci Int Genet. 2018;39:8–18. DOI: https://doi.org/10.1016/j.fsigen.2018.11.019

Ladd C, Adamowicz MS, Bourke MT, Scherczinger CA, Lee HC. A systematic analysis of secondary DNA transfer. J Forensic Sci. 1999;44(6):1270-2.

Goray M, Mitchell RJ, van Oorschot RA. Investigation of secondary DNA transfer of skin cells under controlled test conditions. Leg Med (Tokyo). 2010;12(3):117-20. DOI: https://doi.org/10.1016/j.legalmed.2010.01.003

Farmen RK, Jaghø R, Cortez P, Frøyland ES. Assessment of individual shedder status and implication for secondary DNA transfer. Forensic Sci Int Genet Suppl Ser. 2008;1(1): 415-7. DOI: https://doi.org/10.1016/j.fsigss.2007.08.015

Kanokwongnuwut P, Martin B, Kirkbride KP, Linacre A. Shedding light on shedders. Forensic Sci Int Genet. 2018;36:20-5. DOI: https://doi.org/10.1016/j.fsigen.2018.06.004

van Oorschot RA, Ballantyne KN, Mitchell RJ. Forensic trace DNA: a review. Investig Genet. 2010;1(1):14. DOI: https://doi.org/10.1186/2041-2223-1-14

Dong H, Wang J, Zhang T, Ge JY, Dong YQ, Sun QF, Liu C, Li CX. Comparison of preprocessing methods and storage times for touch DNA samples. Croat Med J. 2017;58(1):4-13. DOI: https://doi.org/10.3325/cmj.2017.58.4

Tonkrongjun P, Thanakiatkrai P, Phetpeng S, Asawutmangkul W, Sotthibandhu S, Kitpipit T. Touch DNA localization and direct PCR: an improved workflow for STR typing from improvise explosive devices. Forensic Sci Int Genet Suppl Ser. 2017;6:e610-e612. DOI: https://doi.org/10.1016/j.fsigss.2017.09.228

Francisco DO, Lopez LF, Gonçalves FT, Fridman C. Casework direct kit as an alternative extraction method to enhance touch DNA samples analysis. Forensic Sci Int Genet. 2020;47:102307. DOI: https://doi.org/10.1016/j.fsigen.2020.102307

Panjaruang P, Romgaew T, Aobaom S. Detection of touch DNA evidence on swab by SYBR®Green I Nucleic Acid Gel Stain. Forensic Sci Int. 2022;341:111477. DOI: https://doi.org/10.1016/j.forsciint.2022.111477

Alketbi SK. Collection techniques of touch DNA deposited on human skin following a strangulation scenario. Int J Legal Med. 2023;137(5):1347-52. DOI: https://doi.org/10.1007/s00414-023-03036-8

Recipon M, Agniel R, Leroy-Dudal J, Fritz T, Carreiras F, Hermitte F, Hubac S, Gallet O, Kellouche S. Targeting cell-derived markers to improve the detection of invisible biological traces for the purpose of genetic-based criminal identification. Sci Rep. 2023;13(1):18105. DOI: https://doi.org/10.1038/s41598-023-45366-y

Madden I, Taylor D, Mitchell N, Goray M, Henry J. Predicting probative levels of touch DNA on tapelifts using Diamond™ Nucleic Acid Dye. Forensic Sci Int Genet. 2024;70:103024. DOI: https://doi.org/10.1016/j.fsigen.2024.103024

Stefanović A, Šorgić D, Cvetković N, Antović A, Ilić G. Precision touch DNA sampling on plastic bag knots for improved profiling of packer and holder contributions. Forensic Sci Int Genet. 2024;71:103033. DOI: https://doi.org/10.1016/j.fsigen.2024

Kamphausen T, Schadendorf D, von Wurmb-Schwark N, Bajanowski T, Poetsch M. Good shedder or bad shedder--the influence of skin diseases on forensic DNA analysis from epithelial abrasions. Int J Legal Med. 2012;126(1):179-83. DOI: https://doi.org/10.1007/s00414-011-0579-0

Zoppis S, Muciaccia B, D'Alessio A, Ziparo E, Vecchiotti C, Filippini A. DNA fingerprinting secondary transfer from different skin areas: Morphological and genetic studies. Forensic Sci Int Genet. 2014;11:137-43. DOI: https://doi.org/10.1016/j.fsigen.2014.03.005

Quinones I, Daniel B. Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Genet. 2012;6(1):26-30. DOI: https://doi.org/10.1016/j.fsigen.2011.01.004

Alketbi SK, Goodwin W. The effect of time and environmental conditions on touch DNA. Forensic Sci Int Genet Suppl Ser. 2019;7(1):701-3. DOI: https://doi.org/10.1016/j.fsigss.2019.10.144

Alketbi SK, Goodwin W. The impact of deposition area and time on touch DNA collected from fabric. Forensic Sci Int Genet Suppl Ser. 2022;8:45-7. DOI: https://doi.org/10.1016/j.fsigss.2022.09.017

Bini C, Giorgetti A, Fazio G, Amurri S, Pelletti G, Pelotti S. Impact on touch DNA of an alcohol-based hand sanitizer used in COVID-19 prevention. Int J Legal Med. 2023;137(3):645-53. DOI: https://doi.org/10.1007/s00414-023-02979-2

Kaesler T, Kirkbride KP, Linacre A. Persistence of touch DNA on commonly encountered substrates in different storage conditions. Forensic Sci Int. 2023;348:111728. DOI: https://doi.org/10.1016/j.forsciint.2023.111728

Onofri M, Tommolini F, Severini S, Gambelunghe C, Lancia M, Carlini L, Carnevali E. Trace DNA transfer in co-working spaces: the importance of background DNA analysis. Int J Mol Sci. 2024;25(4):2207. DOI: https://doi.org/10.3390/ijms25042207

Shahzad M, De Maeyer H, Salih GA, Nilsson M, Haratourian A, Shafique M, Shahid AA, Allen M. Evaluation of storage conditions and the effect on DNA from forensic evidence objects retrieved from lake water. Genes (Basel). 2024;15(3):279. DOI: https://doi.org/10.3390/genes15030279

Lowe A, Murray C, Whitaker J, Tully G, Gill P. The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci Int. 2002;129(1):25-34. DOI: https://doi.org/10.1016/s0379-0738(02)00207-4

Allen RW, Pogemiller J, Joslin J, Gulick M, Pritchard J. Identification through typing of DNA recovered from touch transfer evidence: parameters affecting yield of recovered human DNA. J Forensic Identif. 2008;58(1):33–41.

Goray M, Fowler S, Szkuta B, van Oorschot RAH. Shedder status: an analysis of self and non-self DNA in multiple handprints deposited by the same individuals over time. Forensic Sci Int Genet. 2016;23:190-6. DOI: https://doi.org/10.1016/j.fsigen.2016.05.005

Schwender M, Bamberg M, Dierig L, Kunz SN, Wiegand P. The diversity of shedder tests and a novel factor that affects DNA transfer. Int J Legal Med. 2021;135(4):1267-80. DOI: https://doi.org/10.1007/s00414-021-02533-y

Lee LYC, Tan J, Lee YS, Syn CK. Shedder status: an analysis over time and assessment of various contributing factors. J Forensic Sci. 2023;68(4):1292-1301. DOI: https://doi.org/10.1111/1556-4029.15266

Lacerenza D, Aneli S, Omedei M, Gino S, Pasino S, Berchialla P, Robino C. A molecular exploration of human DNA/RNA co-extracted from the palmar surface of the hands and fingers. Forensic Sci Int Genet. 2016;22:44-53. DOI: https://doi.org/10.1016/j.fsigen.2016.01.012

Tan J, Lee JY, Lee LYC, Aw ZQ, Chew MH, Ishak NIB, Lee YS, Mugni MA, Syn CKC. Shedder status: Does it really exist? Forensic Sci Int Genet Suppl Ser. 2019;7(1): 360-2. DOI: https://doi.org/10.1016/j.fsigss.2019.10.012

Poetsch M, Bajanowski T, Kamphausen T. Influence of an individual's age on the amount and interpretability of DNA left on touched items. Int J Legal Med. 2013;127(6):1093-6. DOI: https://doi.org/10.1007/s00414-013-0916-6

Templeton JE, Linacre A. DNA profiles from fingermarks. Biotechniques. 2014;57(5):259-66. DOI: https://doi.org/10.2144/000114227

Lim S, Subhani Z, Daniel B, Frascione N. Touch DNA: the prospect of DNA profiles from cables. Sci Justice. 2016;56(3):210-5. DOI: https://doi.org/10.1016/j.scijus.2016.02.002

Webb LG, Egan SE, Turbett GR. Recovery of DNA for forensic analysis from lip cosmetics. J Forensic Sci. 2001;46(6):1474-9.

Pizzamiglio M, Mameli A, My D, Garofano L. Forensic identification of a murderer by LCN DNA collected from the inside of the victim's car. Int Congr Ser. 2004;1261:437-9. DOI: https://doi.org/10.1016/S0531-5131(03)01855-7

Bright JA, Petricevic SF. Recovery of trace DNA and its application to DNA profiling of shoe insoles. Forensic Sci Int. 2004;145(1):7-12. DOI: https://doi.org/10.1016/j.forsciint.2004.03.016. Erratum in: Forensic Sci Int. 2018;285:204. DOI: https://doi.org/10.1016/j.forsciint.2017.12.037

Hillier E, Dixon P, Stewart P, Yamashita A, Dikshita L. Recovery of DNA from shoes. Journal (Can Soc Forensic Sci). 2005;38(3):143–50. DOI: https://doi.org/10.1080/00085030.2005.10757588

Polley D, Mickiewicz P, Vaughn M, Miller T, Warburton R, Komonski D, Kantautas C, Reid B, Frappier R, Newman J. An investigation of DNA recovery from firearms and cartridge cases. Journal (Can Soc Forensic Sci). 2006;39(4):217–28. DOI: https://doi.org/10.1080/00085030.2006.10757145

Horsman-Hall KM, Orihuela Y, Karczynski SL, Davis AL, Ban JD, Greenspoon SA. Development of STR profiles from firearms and fired cartridge cases. Forensic Sci Int Genet. 2009;3(4):242-50. DOI: https://doi.org/10.1016/j.fsigen.2009.02.007

Kisberi, JB. Avaliação de DNA de toque depositado em tela de aparelho celular para finalidade forense [Monografia]. São Paulo: Universidade Federal de São Paulo (UNIFESP); 2024.

Meakin G, Jamieson A. DNA transfer: review and implications for casework. Forensic Sci Int Genet. 2013;7(4):434-43. DOI: https://doi.org/10.1016/j.fsigen.2013.03.013

Alessandrini F, Cecati M, Pesaresi M, Turchi C, Carle F, Tagliabracci A. Fingerprints as evidence for a genetic profile: morphological study on fingerprints and analysis of exogenous and individual factors affecting DNA typing. J Forensic Sci. 2003;48(3):586-92.

Phipps M, Petricevic S. The tendency of individuals to transfer DNA to handled items. Forensic Sci Int. 2007;168(2-3):162-8. DOI: https://doi.org/10.1016/j.forsciint.2006.07.010

Goray M, van Oorschot RAH. Shedder status: Exploring means of determination. Sci Justice. 2021;61(4):391-400. DOI: https://doi.org/10.1016/j.scijus.2021.03.004

Kaesler T, Kirkbride KP, Linacre A. DNA deposited in whole thumbprints: A reproducibility study. Forensic Sci Int Genet. 2022;58:102683. DOI: https://doi.org/10.1016/j.fsigen.2022.102683

van Oorschot RAH, McColl DL, Alderton JE, Harvey ML, Mitchell RJ, Szuta B. Activities between activities of focus: relevant when assessing DNA transfer probabilities. Forensic Sci Int Genet Suppl Ser. 2015;5:e75-e77. DOI: https://doi.org/10.1016/j.fsigss.2015.09.031

Wiegand P, Kleiber M. DNA typing of epithelial cells after strangulation. Int J Legal Med. 1997;110(4):181-3. DOI: https://doi.org/10.1007/s004140050063

Djuric M, Varljen T, Stanojevic A, Stojkovic O. DNA typing from handled items. Forensic Sci Int Genet Suppl Ser. 2008;1(1):411-2. DOI: https://doi.org/10.1016/j.fsigss.2007.10.161

Helmus J, Bajanowski T, Poetsch M. DNA transfer: a never ending story. A study on scenarios involving a second person as carrier. Int J Legal Med. 2016;130(1):121-5. DOI: https://doi.org/10.1007/s00414-015-1284-1

Zhang S, Jiao Z, Yan L, Kong F, Liu L, Li X, Tang H, Liu X. Experimental study on primary transfer and secondary transfer of DNA. Chin J of Forensic Med. 2017;(6):610–3.

Kanokwongnuwut P, Kirkbride KP, Linacre A. Detection of latent DNA. Forensic Sci Int Genet. 2018;37:95-101. DOI: https://doi.org/10.1016/j.fsigen.2018.08.004

Burton DG. Cellular senescence, ageing and disease. Age (Dordr). 2009;31(1):1-9. DOI: https://doi.org/10.1007/s11357-008-9075-y

Eckhart L, Lippens S, Tschachler E, Declercq W. Cell death by cornification. Biochim Biophys Acta. 2013;1833(12):3471-80. DOI: https://doi.org/10.1016/j.bbamcr.2013.06.010

Stamatas GN, Nikolovski J, Luedtke MA, Kollias N, Wiegand BC. Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr Dermatol. 2010;27(2):125-31. DOI: https://doi.org/10.1111/j.1525-1470.2009.00973.x

Brasil. Ministério da Justiça e Segurança Pública. Comitê Gestor da Rede Integrada de Bancos de Perfis Genéticos. Manual de Procedimentos Operacionais da Rede Integrada de Bancos de Perfis Genéticos. Brasília, DF; 2024. [Acesso em 2024 dez. 08]. Disponível em: https://www.gov.br/mj/pt-br/assuntos/sua-seguranca/seguranca-publica/ribpg/manual/manual-de-procedimentos-operacionais-da-ribpg-versao-6/view

Williamson AL. Touch DNA: forensic collection and application to investigations. J Assoc Crime Scene Reconstr. 2012;18(1):1-5.

Downloads

Publicado

2024-12-19

Edição

Seção

Artigo

Como Citar

1.
Kisberi JB, Fridman C. Análise do DNA de toque no contexto forense: vantagens e limitações. Saúde ética justiça [Internet]. 19º de dezembro de 2024 [citado 29º de março de 2025];29(2):e-232173. Disponível em: https://revistas.usp.br/sej/article/view/232173