Anticholinesterase activity of β-carboline-1,3,5-triazine hybrids

Authors

  • Paula Baréa State University of Maringá (UEM), Chemistry Department, PR, Brazil https://orcid.org/0000-0002-9809-6666
  • Valéria Aquilino Barbosa State University of Maringá (UEM), Chemistry Department, PR, Brazil
  • Diego Alberto dos Santos Yamazaki State University of Maringá (UEM), Chemistry Department, PR, Brazil
  • Carla Maria Beraldi Gomes State University of Maringá (UEM), Chemistry Department, PR, Brazil
  • Claudio R. Novello Federal Technological University of Paraná, Department of Chemistry and Biology, Francisco Beltrão-PR, Brazil
  • Willian Ferreira da Costa State University of Maringá (UEM), Chemistry Department, PR, Brazil
  • Gisele de Freitas Gauze State University of Maringá (UEM), Chemistry Department, PR, Brazil
  • Maria Helena Sarragiotto State University of Maringá (UEM), Chemistry Department, PR, Brazil https://orcid.org/0000-0003-3861-502X

DOI:

https://doi.org/10.1590/s2175-97902022e19958

Keywords:

β-carboline, 1,3,5-triazine, Acetylcholinesterase, Butyrylcholinesterase

Abstract

The β-carboline-1,3,5-triazine hydrochlorides 8-13 were evaluated in vitro against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The analysed compounds were selective to BuChE, with IC50 values in the range from 1.0-18.8 µM being obtained. The N-{2-[(4,6-dihydrazinyl-1,3,5-triazin-2-yl)amino]ethyl}-1-phenyl-β-carboline-3-carboxamide (12) was the most potent compound and kinetic studies indicate that it acts as a competitive inhibitor of BuChE. Molecular docking studies show that 12 strongly interacts with the residues of His438 (residue of the catalytic triad) and Trp82 (residue of catalytic anionic site), confirming that this compound competes with the same binding site of the butyrylthiocholine.

Downloads

Download data is not yet available.

References

Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res. 2013;36(4):375-399.

Baréa P, Barbosa VA, Bidóia DL, Carreira de Paula J, Stefanello TF, Ferreira da Costa W, et al. Synthesis, antileishmanial activity and mechanism of action studies of novel β-carboline-1,3,5-triazine hybrids. Eur J Med Chem. 2018;150:579-590.

Čolović MB, Kristić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr Neuropharmacol. 2013;11(3):315-335.

Copeland RA. Enzymes: A Practical Introduction to Structure Mechanism, and Data Analysis. 2nd ed., New York, John Wiley and Sons Inc; 2000.

Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci. 2003;4(2):131-138.

Drung B, Scholz C, Barbosa VA, Nazari A, Sarragiotto MH, Schmidt B. Computational & experimental evaluation of structure/activity relationship of β-carbolines as DYRK1A inhibitors. Bioorg Med Chem Lett. 2014;24(20):4854.

Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88.

Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66(2):137-47.

Horton W, Sood A, Peerannawar S, Kugyela N, Kulkarni A, Tulsan R, et al. Synthesis and application of β-carbolines as novel multi-functional anti-Alzheimer’s disease agents. Bioorg Med Chem Lett . 2017;27(2):232-236.

Jameel E, Meena P, Maqbool M, Kumar J, Ahmed W, Mumtazuddin S, et al. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur J Med Chem . 2017;136:36-51.

Jin-Shuai L, Sai-Sai X, Su-Yi L, Long-Fei P, Xiao-Bing W, Ling-Yi K. Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem. 2014;22(21):6089-6104.

Johnson G, Moore SW. Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochem Int. 2012;61(5):783-797.

Larson EB, Kukull WA, Katzman L. Cognitive Impairment: Dementia and Alzheimer’s Disease. Annu Rev Public Health. 1992;13:431-49.

Li Q, Yang H, Chen Y, Sun H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur J Med Chem . 2017;132:294-309.

Maqbool M, Manral A, Jameel E, Kumar J, Saini V, Shandilya A, et al. Development of cyanopyridine-triazine hybrids as lead multitarget anti-Alzheimer agents. Bioorg Med Chem . 2016;24(12):2777-2788.

Marvin Sketch Version 14.8.25, 2014, ChemAxon (http://www.chemaxon.com).

» http://www.chemaxon.com

McNicholas S, Potterton E, Wilson KS, Noble MEM. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. 2011;67(Pt 4):386-394.

Masson P, Carletti E, Nachon F. Structure, activities and biomedical applications of human butyrylcholinesterase. Protein Peptide Lett. 2009;16(10):1215-1224.

Nicolet Y, Lockridge O, Masson P, Fontecilla-camps JC, Nachon F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. J Biol Chem. 2003;278(42):41141-41147.

Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781-1802.

Pinto T, Lanctôt KL, Herrmann N. Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer’s type. Ageing Res Rev. 2011;10(4):404-412.

Rook Y, Schmidtke K, Gaube F, Schepmann D, Wünch B, Heilmann J, et al. Bivalent β-Carbolines as potential multitarget anti-Alzheimer agents. J Med Chem. 2010;53(9):3611.

Rüben K, Wurzlbauer A, Walte A, Sippl W, Bracher F, Becker W. Selectivity profiling and biological activity of novel β-carbolines as potent and selective DYRK1 Kinase inhibitors. Plos One. 2015;10(7)1-18.

Santillo MF, Liu Y, Ferguson M, Vohra SN, Wiesenfeld PL. Inhibition of monoamine oxidase (MAO) by β-carbolines and their interactions in live neuronal (PC12) and liver (HuH-7 and MH1C1) cells. Toxicol In Vitro. 2014;28(3):403-410.

Saxena A, Redman AMG, Jiang X, Lockridge O, Doctor BP. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry. 1997;36(48):14642-14651.

Silva T, Reis J, Teixeira J, Borges F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res Rev . 2014;15:116-145.

Torres JM, Lira AF, Silva DR, Guzzo LM, Sant’anna CMR, Kümmerle AE, et al. Phytochemistry structural insights into cholinesterases inhibition by harmane β-carbolinium derivatives: A kinetics-molecular modeling approach. Phytochemistry. 2012;81:24-30.

Trifunović J, Borčić V, Vukmirović S, Mikov M. Assessment of the pharmacokinetic profile of novel s-triazine derivatives and their potential use in treatment of Alzheimer’s disease. Life Sci. 2017;168:1-6.

Trott O, Olson AJ. AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem . 2010;31(2):455-461.

Veloso AJ, Dhar D, Chow AM, Zhang B, Tang DWF, Ganesh HVS, et al. sym-Triazines for directed Multitarget modulation of cholinesterases and amyloid-β in Alzheimer’s Disease. ACS Chem Neurosci. 2013;4(2):339-349.

Wolf LK. New software and websites for the chemical enterprise. Chem Eng News, 2009;87:48.

Zhao Y, Ye F, Xu J, Liao Q, Chen L, Zhang W, et al. Design, synthesis and evaluation of novel bivalent β-carboline derivatives as multifuncional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem . 2018;26(13):3812-3824.

Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem . 2011;32(11):2359.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Anticholinesterase activity of β-carboline-1,3,5-triazine hybrids. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19958

Funding data