Resveratrol inhibits nicotine-induced conditioned place preference in mice
DOI:
https://doi.org/10.1590/s2175-97902023e20883Keywords:
Nicotine, Resveratrol , Reinstatement , Conditioned place preferenceAbstract
Nicotine addiction leads to in a huge burden on public health and the economy worldwide. Resveratrol (3,5,4’-tetrahydroxystilbene) is the most well-known polyphenolic stilbenoid. Resveratrol was shown to exhibit positive effects on numerous mechanisms that are important for drug and substance addiction. Thus, this study aimed to examine the effect of resveratrol on nicotine addiction. Intraperitoneal (i.p.) treatment with nicotine (0.5 mg/kg) significantly enhanced time spent in the nicotine-paired compartment. Resveratrol (50 and 75 mg/kg, i.p.) and varenicline (2 mg/kg, i.p.) co-administered with nicotine during the 3-day conditioning period effectively diminished the acquisition of nicotine-induced conditioned place preference (CPP). On the other hand, the administration of resveratrol (50 and 75 mg/kg, i.p.) and varenicline (2 mg/kg, i.p.) decreased the low dose (0.1 mg/kg, i.p.) nicotine-induced reinstatement. The results suggest that resveratrol and varenicline inhibit the acquisition and reinstatement of nicotine’s reward properties. Resveratrol displayed similar results in the CPP phases as obtained with the reference drug varenicline. In conclusion, resveratrol could be beneficial as an adjuvant pharmacotherapy for nicotine addiction; however, more investigation is needed to completely explain this property.
Downloads
References
Abd El-Fattah AA, Fahim AT, Sadik NAH, Ali BM. Resveratrol and dimethyl fumarate ameliorate depression-like behaviour in a rat model of chronic unpredictable mild stress. Brain Res. 2018;1701:227-236 doi:10.1016/j. brainres.2018.09.027.
» https://doi.org/10.1016/j. brainres.2018.09.027
Aguilar MA, Rodríguez-Arias M, Miñarro J. Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev. 2009;59(2):253-277 doi:10.1016/j. brainresrev.2008.08.002.
» https://doi.org/10.1016/j. brainresrev.2008.08.002
Allahverdiyev O, Nurten A, Enginar N. Assessment of rewarding and reinforcing properties of biperiden in conditioned place preference in rats. Behav Brain Res. 2011;225(2):642-645 doi:10.1016/j.bbr.2011.07.050.
» https://doi.org/10.1016/j.bbr.2011.07.050
Aydin M, Gungor B, Akdur AS, Aksulu HE, Silan C, Susam I et al. Resveratrol did not alter blood pressure in rats with nitric oxide synthase-inhibited hypertension. Cardiovasc J Afr. 2017;28(3):141-146 doi:10.5830/cvja-2016-069.
» https://doi.org/10.5830/cvja-2016-069
Barone R, Rizzo R, Tabbì G, Malaguarnera M, Frye RE, Bastin J. Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder. Int J Mol Sci. 2019;20(8):1878 doi:10.3390/ijms20081878.
» https://doi.org/10.3390/ijms20081878
Biala G, Budzynska B. Reinstatement of nicotine-conditioned place preference by drug priming: effects of calcium channel antagonists. Eur J Pharmacol. 2006;537(1-3):85-93 doi:10.1016/j.ejphar.2006.03.017.
» https://doi.org/10.1016/j.ejphar.2006.03.017
Biala G, Budzynska B. Calcium-dependent mechanisms of the reinstatement of nicotine-conditioned place preference by drug priming in rats. Pharmacol Biochem Behav. 2008;89(1):116-125 doi:10.1016/j.pbb.2007.12.005.
» https://doi.org/10.1016/j.pbb.2007.12.005
Biala G, Staniak N, Budzynska B. Effects of varenicline and mecamylamine on the acquisition, expression, and reinstatement of nicotine-conditioned place preference by drug priming in rats. Naunyn Schmiedebergs Arch Pharmacol. 2010;381(4):361-370 doi:10.1007/s00210-010-0498-5.
» https://doi.org/10.1007/s00210-010-0498-5
Blanco-Gandía MC, Aguilar MA, Miñarro J, Rodríguez-Arias M. Reinstatement of Drug-seeking in Mice Using the Conditioned Place Preference Paradigm. J Vis Exp. 2018;(136):56983 doi:10.3791/56983.
» https://doi.org/10.3791/56983
Blokhina EA, Kashkin VA, Zvartau EE, Danysz W, Bespalov AY. Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice. Eur Neuropsychopharmacol. 2005;15(2):219-225 doi:10.1016/j.euroneuro.2004.07.005.
» https://doi.org/10.1016/j.euroneuro.2004.07.005
Calleri E, Pochetti G, Dossou KSS, Laghezza A, Montanari R, Capelli D et al. Resveratrol and its metabolites bind to PPARs. Chembiochem. 2014;15(8):1154-1160 doi:10.1002/cbic.201300754.
» https://doi.org/10.1002/cbic.201300754
Chong E, Chang SL, Hsiao YW, Singhal R, Liu SH, Leha T et al. Resveratrol, a red wine antioxidant, reduces atrial fibrillation susceptibility in the failing heart by PI3K/ AKT/eNOS signaling pathway activation. Heart Rhythm. 2015;12(5):1046-1056 doi:10.1016/j.hrthm.2015.01.044.
» https://doi.org/10.1016/j.hrthm.2015.01.044
D’Souza MS. Neuroscience of nicotine for addiction medicine: novel targets for smoking cessation medications. Prog Brain Res. 2016;223:191-214 doi:10.1016/bs.pbr.2015.07.008.
» https://doi.org/10.1016/bs.pbr.2015.07.008
Dhir A. Natural polyphenols in preclinical models of epilepsy. Phytother Res. 2020;34(6):1268-1281 doi:10.1002/ ptr.6617.
» https://doi.org/10.1002/ ptr.6617
Domi E, Caputi FF, Romualdi P, Domi A, Scuppa G, Candeletti S et al. Activation of PPARγ Attenuates the Expression of Physical and Affective Nicotine Withdrawal Symptoms through Mechanisms Involving Amygdala and Hippocampus Neurotransmission. J Neurosci. 2019;39(49):9864-9875 doi:10.1523/jneurosci.1922-19.2019.
» https://doi.org/10.1523/jneurosci.1922-19.2019
Fartootzadeh R, Azizi F, Alaei H, Reisi P. Functional crosstalk of nucleus accumbens CB1 and OX2 receptors in response to nicotine-induced place preference. Neurosci Lett. 2019;698:160-164 doi:10.1016/j.neulet.2019.01.027.
» https://doi.org/10.1016/j.neulet.2019.01.027
Fattore L, Spano MS, Cossu G, Scherma M, Fratta W, Fadda P. Baclofen prevents drug-induced reinstatement of extinguished nicotine-seeking behaviour and nicotine place preference in rodents. Eur Neuropsychopharmacol . 2009;19(7):487-498 doi:10.1016/j.euroneuro.2009.01.007.
» https://doi.org/10.1016/j.euroneuro.2009.01.007
File SE, Cheeta S, Akanezi C. Diazepam and nicotine increase social interaction in gerbils: a test for anxiolytic action. Brain Res. 2001;888(2):311-313 doi:10.1016/s0006-8993(00)03102-4.
» https://doi.org/10.1016/s0006-8993(00)03102-4
Golden SA, Jin M, Shaham Y. Animal Models of (or for) Aggression Reward, Addiction, and Relapse: Behavior and Circuits. J Neurosci. 2019;39(21):3996-4008 doi:10.1523/jneurosci.0151-19.2019.
» https://doi.org/10.1523/jneurosci.0151-19.2019
Gubner NR, McKinnon CS, Phillips TJ. Effects of varenicline on ethanol-induced conditioned place preference, locomotor stimulation, and sensitization. Alcohol Clin Exp Res. 2014;38(12):3033-3042 doi:10.1111/acer.12588.
» https://doi.org/10.1111/acer.12588
Han Y, Jiang C, Tang J, Wang C, Wu P, Zhang G et al. Resveratrol reduces morphine tolerance by inhibiting microglial activation via AMPK signalling. Eur J Pain. 2014;18(10):1458-1470 doi:10.1002/ejp.511.
» https://doi.org/10.1002/ejp.511
Hsieh CP, Chang WT, Chen L, Chen HH, Chan MH. Differential inhibitory effects of resveratrol on excitotoxicity and synaptic plasticity: involvement of NMDA receptor subtypes. Nutr Neurosci. 2019;1-16 doi:10.1080/102841 5x.2019.1641995.
» https://doi.org/10.1080/102841 5x.2019.1641995
Jackson A, Bagdas D, Muldoon PP, Lichtman AH, Carroll FI, Greenwald M et al. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence. Neuropharmacology. 2017;118:38-45 doi:10.1016/j.neuropharm.2017.03.005.
» https://doi.org/10.1016/j.neuropharm.2017.03.005
Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC et al. Resveratrol and brain mitochondria: A review. Mol Neurobiol. 2018;55(3):2085-2101 doi:10.1007/s12035-017-0448-z.
» https://doi.org/10.1007/s12035-017-0448-z
Jordan CJ, Xi ZX. Discovery and development of varenicline for smoking cessation. Expert Opin Drug Discov. 2018;13(7):671-683 doi:10.1080/17460441.2018.1458090.
» https://doi.org/10.1080/17460441.2018.1458090
Kaminski RM, Núñez-Taltavull JF, Budziszewska B, Lasoń W, Gasior M, Zapata A et al. Effects of cocaine-kindling on the expression of NMDA receptors and glutamate levels in mouse brain. Neurochem Res. 2011;36(1):146-152 doi:10.1007/s11064-010-0284-2.
» https://doi.org/10.1007/s11064-010-0284-2
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiat. 2016;3(8):760-773 doi:10.1016/s2215-0366(16)00104-8.
» https://doi.org/10.1016/s2215-0366(16)00104-8
Kutlu MG, Connor DA, Tumolo JM, Cann C, Garrett B, Gould TJ. Nicotine modulates contextual fear extinction through changes in ventral hippocampal GABAergic function. Neuropharmacology. 2018;141:192-200 doi:10.1016/j. neuropharm.2018.08.019.
» https://doi.org/10.1016/j. neuropharm.2018.08.019
Le Foll B, Di Ciano P, Panlilio LV, Goldberg SR, Ciccocioppo R. Peroxisome proliferator-activated receptor (PPAR) agonists as promising new medications for drug addiction: preclinical evidence. Curr Drug Targets. 2013;14(7):768-776 doi:10.2174/1389450111314070006.
» https://doi.org/10.2174/1389450111314070006
Li S, Li Z, Pei L, Le AD, Liu F. The α7nACh-NMDA receptor complex is involved in cue-induced reinstatement of nicotine seeking. J Exp Med. 2012;209(12):2141-2147 doi:10.1084/jem.20121270.
» https://doi.org/10.1084/jem.20121270
Li X, Semenova S, D’Souza MS, Stoker AK, Markou A. Involvement of glutamatergic and GABAergic systems in nicotine dependence: Implications for novel pharmacotherapies for smoking cessation. Neuropharmacology. 2014;76 Pt B(0 0): 554-565 doi:10.1016/j. neuropharm.2013.05.042.
» https://doi.org/10.1016/j. neuropharm.2013.05.042
Lu J, Yang J, Zheng Y, Fang S, Chen X. Resveratrol reduces store-operated Ca(2+) entry and enhances the apoptosis of fibroblast-like synoviocytes in adjuvant arthritis rats model via targeting ORAI1-STIM1 complex. Biol Res. 2019;52(1):45 doi:10.1186/s40659-019-0250-7.
» https://doi.org/10.1186/s40659-019-0250-7
Lu L, Liu Y, Zhu W, Shi J, Liu Y, Ling W et al. Traditional medicine in the treatment of drug addiction. Am J Drug Alcohol Abuse. 2009;35(1):1-11. doi:10.1080/00952990802455469.
» https://doi.org/10.1080/00952990802455469
Ma L, Wu YM, Guo YY, Yang Q, Feng B, Song Q et al. Nicotine addiction reduces the large-conductance Ca(2+)-activated potassium channels expression in the nucleus accumbens. Neuromolecular Med. 2013;15(2):227-237 doi:10.1007/s12017-012-8213-y.
» https://doi.org/10.1007/s12017-012-8213-y
Matheson J, Le Foll B. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor (PPAR) Agonists in Substance Use Disorders: A Synthesis of Preclinical and Human Evidence. Cells. 2020;9(5):1196. doi:10.3390/cells9051196.
» https://doi.org/10.3390/cells9051196
Mendes FR, Prado DR. Use of herbal medicine to treat drug addiction. In: Innovations in the Treatment of Substance Addiction. 2016, pp 51-68. doi:10.1007/978-3-319-43172-7_4
» https://doi.org/10.1007/978-3-319-43172-7_4
Miller DK, Oelrichs CE, Sage AS, Sun GY, Simonyi A. Repeated resveratrol treatment attenuates methamphetamine-induced hyperactivity and [3H]dopamine overflow in rodents. Neurosci Lett . 2013;554:53-58 doi:10.1016/j.neulet.2013.08.051.
» https://doi.org/10.1016/j.neulet.2013.08.051
Nakata R, Takahashi S, Inoue H. Recent advances in the study on resveratrol. Biol Pharm Bull. 2012;35(3):273-279 doi:10.1248/bpb.35.273.
» https://doi.org/10.1248/bpb.35.273
Nalli M, Ortar G, Moriello AS, Morera E, Di Marzo V, De Petrocellis L. TRPA1 channels as targets for resveratrol and related stilbenoids. Bioorg Med Chem Lett. 2016;26(3):899-902 doi:10.1016/j.bmcl.2015.12.065.
» https://doi.org/10.1016/j.bmcl.2015.12.065
Napier TC, Herrold AA, de Wit H. Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev. 2013;37(9 Pt A):2081-2086 doi:10.1016/j.neubiorev.2013.05.002.
» https://doi.org/10.1016/j.neubiorev.2013.05.002
Padula AE, Griffin WC 3rd, Lopez MF, Nimitvilai S, Cannady R, McGuier NS et al. KCNN genes that encode small-conductance Ca2+-Activated K+ channels influence alcohol and drug addiction. Neuropsychopharmacol. 2015;40(8):1928-1939 doi:10.1038/npp.2015.42.
» https://doi.org/10.1038/npp.2015.42
Panlilio LV, Justinova Z, Goldberg SR. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol Ther. 2013;138(1):84-102 doi:10.1016/j.pharmthera.2013.01.003.
» https://doi.org/10.1016/j.pharmthera.2013.01.003
Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148(3):421-433 doi:10.1016/j.cell.2012.01.017.
» https://doi.org/10.1016/j.cell.2012.01.017
Paterson NE, Froestl W, Markou A. The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology (Berl). 2004;172(2):179-186 doi:10.1007/s00213-003-1637-1.
» https://doi.org/10.1007/s00213-003-1637-1
Pogun S, Yararbas G, Nesil T, Kanit L. Sex differences in nicotine preference. J Neurosci Res. 2017;95(1-2):148-162 doi:10.1002/jnr.23858.
» https://doi.org/10.1002/jnr.23858
Repossi G, Das UN, Eynard AR. Molecular Basis of the Beneficial Actions of Resveratrol. Arch Med Res. 2020;51(2):105-114 doi:10.1016/j.arcmed.2020.01.010.
» https://doi.org/10.1016/j.arcmed.2020.01.010
Rezaee R, Jangjoo S, Ekhtiary S, Anani MA, Tsatsakis A, Spandidos DA et al. Effects of resveratrol on the acquisition and reinstatement of morphine-induced conditioned place preference in mice. World Acad Sc J. 2020;2(2):77-83
Ruivo J, Francisco C, Oliveira R, Figueiras A. The main potentialities of resveratrol for drug delivery systems. Braz J Pharm Sci. 2015;51(3):499-514 doi:10.1590/S1984-82502015000300002.
» https://doi.org/10.1590/S1984-82502015000300002
Sahraei H, Falahi M, Zarrindast MR, Sabetkasaei M, Ghoshooni H, Khalili M. The effects of nitric oxide on the acquisition and expression of nicotine-induced conditioned place preference in mice. Eur J Pharmacol . 2004;503(1-3):81-87. doi:10.1016/j.ejphar.2004.08.054.
» https://doi.org/10.1016/j.ejphar.2004.08.054
Shen JD, Zhang YW, Wang BY, Bai L, Lu SF, Zhu LL et al. Effects of resveratrol on the levels of ATP, 5-HT and GAP-43 in the hippocampus of mice exposed to chronic unpredictable mild stress. Neurosci Lett . 2020;735:135232 doi:10.1016/j.neulet.2020.135232.
» https://doi.org/10.1016/j.neulet.2020.135232
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P et al. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev. 2019;39(5):1851-1891 doi:10.1002/med.21565.
» https://doi.org/10.1002/med.21565
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A et al. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci . 2018;19(6):doi:10.3390/ijms19061578.
» https://doi.org/10.3390/ijms19061578
Tian B, Liu J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J Sci Food Agric. 2020;100(4):1392-1404 doi:10.1002/jsfa.10152.
» https://doi.org/10.1002/jsfa.10152
Titomanlio F, Perfumi M, Mattioli L. Rhodiola rosea L. extract and its active compound salidroside antagonized both induction and reinstatement of nicotine place preference in mice. Psychopharmacology (Berl) . 2014;231(10):2077-2086 doi:10.1007/s00213-013-3351-y.
» https://doi.org/10.1007/s00213-013-3351-y
Tiwari RK, Sharma V, Pandey RK, Shukla SS. Nicotine Addiction: Neurobiology and Mechanism. J Pharmacopuncture. 2020;23(1):1-7 doi:10.3831/kpi.2020.23.001.
» https://doi.org/10.3831/kpi.2020.23.001
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12(3-4):227-462 doi:10.1111/j.1369-1600.2007.00070.x.
» https://doi.org/10.1111/j.1369-1600.2007.00070.x
Varani AP, Aso E, Moutinho LM, Maldonado R, Balerio GN. Attenuation by baclofen of nicotine rewarding properties and nicotine withdrawal manifestations. Psychopharmacology (Berl) . 2014;231(15):3031-3040 doi:10.1007/s00213-014-3469-6.
» https://doi.org/10.1007/s00213-014-3469-6
Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012;3(4):200-201 doi:10.4103/2231-4040.104709.
» https://doi.org/10.4103/2231-4040.104709
Wang LP, Li F, Shen X, Tsien JZ. Conditional knockout of NMDA receptors in dopamine neurons prevents nicotine-conditioned place preference. PLoS One. 2010;5(1):e8616 doi:10.1371/journal.pone.0008616.
» https://doi.org/10.1371/journal.pone.0008616
Wang YJ, Chan MH, Chen L, Wu SN, Chen HH. Resveratrol attenuates cortical neuron activity: roles of large conductance calcium-activated potassium channels and voltage-gated sodium channels. J Biomed Sci. 2016;23(1):47 doi:10.1186/s12929-016-0259-y.
» https://doi.org/10.1186/s12929-016-0259-y
Wang YJ, Hsieh CP, Chan MH, Chan TY, Chen L, Chen HH. Distinct effects of resveratrol on seizures and hyperexcitability induced by NMDA and 4-aminopyridine. Nutr Neurosci. 2019;22(12):867-876 doi:10.1080/1028415x.2018.1461458.
» https://doi.org/10.1080/1028415x.2018.1461458
Xia N, Förstermann U, Li H. Resveratrol and endothelial nitric oxide. Molecules. 2014;19(10):16102-16121 doi:10.3390/molecules191016102.
» https://doi.org/10.3390/molecules191016102
Yararbas G, Keser A, Kanit L, Pogun S. Nicotine-induced conditioned place preference in rats: sex differences and the role of mGluR5 receptors. Neuropharmacology. 2010;58(2):374-382 doi:10.1016/j.neuropharm.2009.10.001.
» https://doi.org/10.1016/j.neuropharm.2009.10.001
Yin H, Wang H, Zhang H, Gao N, Zhang T, Yang Z. Resveratrol Attenuates Aβ-Induced Early Hippocampal Neuron Excitability Impairment via Recovery of Function of Potassium Channels. Neurotox Res. 2017;32(3):311-324 doi:10.1007/s12640-017-9726-9.
» https://doi.org/10.1007/s12640-017-9726-9
You S, Li X, Xiong J, Zhu X, Zhangsun D, Zhu X et al. α-Conotoxin TxIB: A Uniquely Selective Ligand for α6/ α3β2β3 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Conditioned Place Preference in Mice. Mar Drugs. 2019;17(9):doi:10.3390/md17090490.
» https://doi.org/10.3390/md17090490
Yusoff NH, Mansor SM, Müller CP, Hassan Z. Baclofen blocks the acquisition and expression of mitragynine-induced conditioned place preference in rats. Behavioural brain research. 2018;345:65-71
Zou Z, Wang H, d’Oleire Uquillas F, Wang X, Ding J, Chen H. Definition of Substance and Non-substance Addiction. Adv Exp Med Biol. 2017;1010:21-41 doi:10.1007/978-981-10-5562-1_2.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.