Antiproliferative effects of 13α/β-steroids on triple-negative MDA-MB-231 breast cancer cells: unraveling intracellular signaling without ERα

Authors

  • Alexander Scherbakov N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia https://orcid.org/0000-0002-2974-9555
  • Yury Kuznetsov N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
  • Margarita Yastrebova Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russia
  • Alvina Khamidullina Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russia
  • Danila Sorokin N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
  • Maria Tserfas N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
  • Inna Levina 2 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia

DOI:

https://doi.org/10.1590/s2175-97902023e22540

Keywords:

Breast cancer, Steroids, GLUT1, Metformin, Apoptosis

Abstract

This study aimed to investigate the activities of novel 20(R)-3,20-dihydroxy-19-norpregn-1,3,5(10)-trienes (kuz7 and kuz8b) of natural 13β- and epimeric 13α-series against triple-negative MDA-MB-231 breast cancer cells. High antiproliferative activity of synthesized compounds kuz8b and kuz7 against MDA-MB-231 triple-negative cancer cells was revealed. The steroid kuz7 of natural 13β-configuration was more active against MDA-MB-231 cells than the 13α-steroid kuz8b. Cell cycle analysis revealed common patterns for the action of both tested compounds. The number of cells in the subG1 phase increased in a dose-dependent manner, indicating induction of apoptosis, which was also verified by PARP cleavage. In contrast, the number of cells in the G0/G1 phase decreases with increasing compound concentration. Steroid kuz7 at micromolar concentrations reduced the expression of GLUT1, a glucose transporter. High efficacy of the combination of kuz7 with biguanide metformin was shown, and synergistic effects on MDA-MB-231 cell growth and expression of the anti-apoptotic protein Bcl-2 were revealed. According to the obtained results, including the high activity of kuz7 against triple-negative cancer cells, the detected induction of apoptosis, and the decrease in GLUT1 expression, 13β-steroid kuz7 is of interest for further preclinical studies both alone and in combination with the metabolic drug metformin.

Downloads

Download data is not yet available.

References

Alghasham AA. Cucurbitacins - a promising target for cancer therapy. Int J Health Sci. 2013;7(1):77-89. 10.12816/0006025

» https://doi.org/10.12816/0006025

Barchiesi G, Roberto M, Verrico M, Vici P, Tomao S, Tomao F. Emerging role of PARP inhibitors in metastatic triple negative breast cancer. Current scenario and future perspectives. Front Oncol. 2021;11. 10.3389/fonc.2021.769280

» https://doi.org/10.3389/fonc.2021.769280

Bauer D, Mazzio E, Hilliard A, Oriaku ET, Soliman KFA. Effect of apigenin on whole transcriptome profile of TNFα-activated MDA-MB-468 triple negative breast cancer cells. Oncol Lett. 2020;19(3):2123-2132. 10.3892/ol.2020.11327

» https://doi.org/10.3892/ol.2020.11327

da Silva JL, Cardoso Nunes NC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: A thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855. 10.1016/j.critrevonc.2019.102855

» https://doi.org/10.1016/j.critrevonc.2019.102855

Dai LB, Zhong JT, Shen LF, Zhou SH, Lu ZJ, Bao YY, et al. Radiosensitizing effects of curcumin alone or combined with GLUT1 siRNA on laryngeal carcinoma cells through AMPK pathway-induced autophagy. J Cell Mol Med. 2021. 10.1111/jcmm.16450

» https://doi.org/10.1111/jcmm.16450

de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180-e190. 10.1016/s2214-109x(19)30488-7

» https://doi.org/10.1016/s2214-109x(19)30488-7

Djurendić EA, Zavis MP, Sakac MN, Canadi JJ, Kojić VV, Bogdanović GM, et al. Synthesis and antitumor activity of new D-seco and D-homo androstane derivatives. Steroids. 2009;74(12):983-988. 10.1016/j.steroids.2009.07.007

» https://doi.org/10.1016/j.steroids.2009.07.007

Eliyatkın N, Yalçın E, Zengel B, Aktaş S, Vardar E. Molecular classification of breast carcinoma: from traditional, old-fashioned way to a new age, and a new way. J Breast Health. 2015;11(2):59-66. 10.5152/tjbh.2015.1669

» https://doi.org/10.5152/tjbh.2015.1669

Elmore S. Apoptosis: a review of programmed cell death.. Toxicol Pathol. 2007;35(4):495-516. 10.1080/01926230701320337

» https://doi.org/10.1080/01926230701320337

Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, et al. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res. 2022;177:106114. 10.1016/j.phrs.2022.106114

» https://doi.org/10.1016/j.phrs.2022.106114

Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77-106. 10.1016/j.gendis.2018.05.001

» https://doi.org/10.1016/j.gendis.2018.05.001

Fröhlich T, Kiss A, Wölfling J, Mernyák E, Kulmány ÁE, Minorics R, et al. Synthesis of artemisinin-estrogen hybrids highly active against HCMV, P. falciparum, and cervical and breast cancer. ACS Med Chem Lett. 2018;9(11):1128-1133. 10.1021/acsmedchemlett.8b00381

» https://doi.org/10.1021/acsmedchemlett.8b00381

Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019;116:135-170. 10.1016/bs.apcsb.2019.01.001

» https://doi.org/10.1016/bs.apcsb.2019.01.001

Garg S, Kaul SC, Wadhwa R. Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). Int J Oncol. 2018;52(1):19-37. 10.3892/ijo.2017.4203

» https://doi.org/10.3892/ijo.2017.4203

Gunnink LK, Alabi OD, Kuiper BD, Gunnink SM, Schuiteman SJ, Strohbehn LE, et al. Curcumin directly inhibits the transport activity of GLUT1. Biochimie. 2016;125:179-185. 10.1016/j.biochi.2016.03.014

» https://doi.org/10.1016/j.biochi.2016.03.014

Kong Y, Chen J, Zhou Z, Xia H, Qiu MH, Chen C. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer. PloS one. 2014;9(7):e103760. 10.1371/journal.pone.0103760

» https://doi.org/10.1371/journal.pone.0103760

Koushki M, Khedri A, Aberomand M, Akbari Baghbani K, Mohammadzadeh G. Synergistic anti-cancer effects of silibinin-etoposide combination against human breast carcinoma MCF-7 and MDA-MB-231 cell lines. Iran J Basic Med Sci. 2021;24(9):1211-1219. 10.22038/ijbms.2021.56341.12575

» https://doi.org/10.22038/ijbms.2021.56341.12575

Kovačević SZ, Podunavac-Kuzmanović SO, Jevrić LR, Vukić VR, Savić MP, Djurendić EA. Preselection of A- and B-modified d-homo lactone and d-seco androstane derivatives as potent compounds with antiproliferative activity against breast and prostate cancer cells - QSAR approach and molecular docking analysis. Eur J Pharm Sci. 2016;93:107-113. 10.1016/j.ejps.2016.08.009

» https://doi.org/10.1016/j.ejps.2016.08.009

Kuznetsov YV, Levina IS, Scherbakov AM, Andreeva OE, Dmitrenok AS, Malyshev OR, et al. 3,20-Dihydroxy-13α-19-norpregna-1,3,5(10)-trienes. Synthesis, structures, and cytotoxic, estrogenic, and antiestrogenic effects. Steroids . 2018a;137:1-13. 10.1016/j.steroids.2018.07.007

» https://doi.org/10.1016/j.steroids.2018.07.007

Kuznetsov YV, Levina IS, Scherbakov AM, Andreeva OE, Fedyushkina IV, Dmitrenok AS, et al. New estrogen receptor antagonists. 3,20-Dihydroxy-19-norpregna-1,3,5(10)-trienes: Synthesis, molecular modeling, and biological evaluation. Eur J Med Chem. 2018b;143:670-682. 10.1016/j.ejmech.2017.11.042

» https://doi.org/10.1016/j.ejmech.2017.11.042

Lan T, Wang L, Xu Q, Liu W, Jin H, Mao W, et al. Growth inhibitory effect of Cucurbitacin E on breast cancer cells. Int J Clin Exp Pathol. 2013;6(9):1799-1805.

Lee HH, Jung J, Moon A, Kang H, Cho H. Antitumor and anti-Invasive effect of apigenin on human breast carcinoma through suppression of IL-6 expression. Int J Mol Sci. 2019;20(13). 10.3390/ijms20133143

» https://doi.org/10.3390/ijms20133143

Liao H, Wang Z, Deng Z, Ren H, Li X. Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway. Int J Clin Exp Med. 2015;8(6):8948-8957.

Medina MA, Oza G, Sharma A, Arriaga LG, Hernández Hernández JM, Rotello VM, et al. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020;17(6):2078. 10.3390/ijerph17062078

» https://doi.org/10.3390/ijerph17062078

Mernyák E, Kovács I, Minorics R, Sere P, Czégány D, Sinka I, et al. Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro antiproliferative activities. J Steroid Biochem Mol Biol. 2015;150:123-134. 10.1016/j.jsbmb.2015.04.001

» https://doi.org/10.1016/j.jsbmb.2015.04.001

Miladiyah I, Yuanita E, Nuryadi S, Jumina J, Haryana SM, Mustofa M. Synergistic Effect of 1,3,6-Trihydroxy-4,5,7-Trichloroxanthone in combination with Doxorubicin on B-Cell Lymphoma cells and Its mechanism of action through molecular docking. Curr Ther Res. 2020;92:100576. 10.1016/j.curtheres.2020.100576

» https://doi.org/10.1016/j.curtheres.2020.100576

Moghtaderi H, Sepehri H, Delphi L, Attari F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. BioImpacts: BI. 2018;8(3):185-194. 10.15171/bi.2018.21

» https://doi.org/10.15171/bi.2018.21

Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 2019;11:151-164. 10.2147/BCTT.S176070

» https://doi.org/10.2147/BCTT.S176070

Mruk DD, Cheng CY. Enhanced chemiluminescence (ECL) for routine immunoblotting: An inexpensive alternative to commercially available kits. Spermatogenesis. 2011;1(2):121-122. 10.4161/spmg.1.2.16606

» https://doi.org/10.4161/spmg.1.2.16606

Nasir B, Baig MW, Majid M, Ali SM, Khan MZI, Kazmi STB, et al. Preclinical anticancer studies on the ethyl acetate leaf extracts of Datura stramonium and Datura inoxia. BMC Complementary Med Ther. 2020;20(1):188. 10.1186/s12906-020-02975-8

» https://doi.org/10.1186/s12906-020-02975-8

Nikolić AR, Kuzminac IZ, Jovanović-Šanta SS, Jakimov DS, Aleksić LD, Sakač MN. Anticancer activity of novel steroidal 6-substituted 4-en-3-one D-seco dinitriles. Steroids . 2018;135:101-107. 10.1016/j.steroids.2018.03.009

» https://doi.org/10.1016/j.steroids.2018.03.009

Nikolić AR, Petri ET, Klisurić OR, Ćelić AS, Jakimov DS, Djurendić EA, et al. Synthesis and anticancer cell potential of steroidal 16,17-seco-16,17a-dinitriles: Identification of a selective inhibitor of hormone-independent breast cancer cells. Bioorg Med Chem. 2015;23(4):703-711. 10.1016/j. bmc.2014.12.069

» https://doi.org/10.1016/j. bmc.2014.12.069

Ntellas P, Spathas N, Agelaki S, Zintzaras E, Saloustros E. Taxane & cyclophosphamide vs anthracycline & taxane-based chemotherapy as adjuvant treatment for breast cancer: a pooled analysis of randomized controlled trials by the Hellenic Academy of Oncology. Oncotarget. 2019;10(11):1209-1216. 10.18632/oncotarget.26632

» https://doi.org/10.18632/oncotarget.26632

Piven YA, Scherbakov AM, Yastrebova MA, Sorokin DV, Shchegolev YY, Matous AE, et al. Effective synthesis of novel dihydrobenzisoxazoles bearing the 2-aminothiazole moiety and evaluation of the antiproliferative activity of their acylated derivatives. Org Biomol Chem. 2021;19(47):10432-10443. 10.1039/d1ob01614h

» https://doi.org/10.1039/d1ob01614h

Roshanazadeh M, Babaahmadi Rezaei H, Rashidi M. Quercetin synergistically potentiates the anti-metastatic effect of 5-fluorouracil on the MDA-MB-231 breast cancer cell line. Iran J Basic Med Sci . 2021;24(7):928-934. 10.22038/ijbms.2021.56559.12629

» https://doi.org/10.22038/ijbms.2021.56559.12629

Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45(3):528-537. 10.1016/s0008-6363(99)00384-3

» https://doi.org/10.1016/s0008-6363(99)00384-3

Scherbakov AM, Andreeva OE. Apigenin inhibits growth of breast cancer cells: the role of ERα and HER2/neu. Acta Naturae. 2015;7(3):133-139.

Schneider G, Kiss A, Mernyák E, Benke Z, Wölfling J, Frank É, et al. Stereocontrolled synthesis of the four 16-hydroxymethyl-19-nortestosterone isomers and their antiproliferative activities. Steroids . 2016;105:113-120. 10.1016/j.steroids.2015.12.003

» https://doi.org/10.1016/j.steroids.2015.12.003

Soni VK, Mehta A, Ratre YK, Chandra V, Shukla D, Kumar A, et al. Counteracting action of curcumin on high glucose-induced chemoresistance in hepatic carcinoma cells. Front Oncol . 2021;11:738961. 10.3389/fonc.2021.738961

» https://doi.org/10.3389/fonc.2021.738961

Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J. Breast cancer: epidemiology and etiology. Cell Biochem Biophys. 2015;72(2):333-338. 10.1007/s12013-014-0459-6

» https://doi.org/10.1007/s12013-014-0459-6

Vikas P, Borcherding N, Chennamadhavuni A, Garje R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front Oncol . 2020;10:570-570. 10.3389/fonc.2020.00570.

» https://doi.org/10.3389/fonc.2020.00570

Won KA, Spruck C. Triple-negative breast cancer therapy: Current and future perspectives (Review). Int J Oncol . 2020;57(6):1245-1261. 10.3892/ijo.2020.5135

» https://doi.org/10.3892/ijo.2020.5135

Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, et al. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget . 2017;8(1):1913-1924. 10.18632/oncotarget.12284

» https://doi.org/10.18632/oncotarget.12284

Yersal O, Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol. 2014;5(3):412-424. 10.5306/wjco.v5.i3.412

» https://doi.org/10.5306/wjco.v5.i3.412

Zhao L, Au JL, Wientjes MG. Comparison of methods for evaluating drug-drug interaction. Front Biosci (Elite edition). 2010;2(1):241-249. 10.2741/e86

» https://doi.org/10.2741/e86

Downloads

Published

2023-05-08

Issue

Section

Original Article

How to Cite

Antiproliferative effects of 13α/β-steroids on triple-negative MDA-MB-231 breast cancer cells: unraveling intracellular signaling without ERα. (2023). Brazilian Journal of Pharmaceutical Sciences, 59, e22540. https://doi.org/10.1590/s2175-97902023e22540

Funding data