Solid-state properties of pink clay from Jequitinhonha Valley in Brazil for pre-formulation study
DOI:
https://doi.org/10.1590/s2175-97902023e21460Keywords:
Pink clay mineral , Thermal behavior, Iron phases, Powder technology, Solid-state stability , Kinetic studyAbstract
Clay minerals are still widely used in pharmaceutical products for human health and cosmetic purposes. Pre-formulation studies were conducted to identify solid-state properties of pink clay, a sample from Diamantina, Brazil. Among the solid properties to be analyzed, we have selected type identification, iron phases, crystallinity, powder flow characteristics, thermal behavior, and non-isothermal phase transition kinetics. The pink clay is composed of (1:1) clay type and kaolinite as the main component. The Mössbauer spectrum of pink clay shows Fe3+(α-Fe2O3) hematite, Fe2+, and Fe3+ with large Δ/2ξq of about 2.80 and 2.69 mm.s-1 respectively, related to iron silicates, most likely pyroxene, and a superparamagnetic Fe3+. Pink clay exhibits poor flow properties. The thermal behavior indicates a phase-transition between 400 - 600 ºC associated with the dehydroxylation of the pink clay system requiring ~300 kJ mol-1, being constant until the process reaches a conversion of ~50% when the energy is enhanced to ~530 kJ mol-1, concluding the whole dehydroxylation process (α=80%). Solid-state properties and characteristics found for the pink clay must be considered for the proper design of formulations. This type of clay shows unique pharmaceutical properties that can be favorably exploited by the cosmetic industry.
Downloads
References
Aulton, ME, Taylor, KM.G. Aulton. Delineamento de Formas Farmacêuticas. Elsevier. 2016, 4 ed. 872p.
Bejaoui M, Kalfat R, Galai H. The effect of adding PVP to the binary solid dispersion (indomethacin: kaolin) on the formation of physically stable amorphous drug. J Pharm Innov. 2021;1-11.
Brindley GW, Nakahira M. A kinetic study of the dehydroxylation of kaolinite. Clays Clay Miner. 1956;5:266-78.
Brito LG, Leite GQ, Duarte FÍC, Ostrosky EA, Ferrari M, de Lima AAN, et al. Thermal behavior of ferulic acid employing isoconversional models and artificial neural network. J Therm Anal Calorim. 2019;138:3715-26.
Browne JE, Feldkamp JR, White JL, Hem SL. Characterization and adsorptive properties of pharmaceutical grade clays. J Pharm Sci. 1980;69(7):816-23.
Carretero MI, Pozo M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl Clay Sci. 2010;47(3-4):171-81.
Carretero MI, Pozo M. Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Appl Clay Sci . 2009;46(1):73-80.
Carvalho F, Braga JP, Freitas-Marques MB, Sebastião RCO. Fractional kinetics on thermal analysis: application to lumefantrine thermal decomposition. J Mol Model. 2020;26(7):1-9.
Cavalheiro, ETG, Ionashiro M, Breviglieri ST, Marino G, Chierice GO. A influência de fatores experimentais nos resultados de análises termogravimétricas. Quim Nova. 1995;18(3):305-8.
Chauhan M, Saini VK, Suthar S. Removal of pharmaceuticals and personal care products (PPCPs) from water by adsorption on aluminum pillared clay. J Porous Mater. 2020;27(2):383-93.
Freitas-Marques MB, Araujo BCR, da Silva PHR, Fernandes C, Mussel WN, Sebastião RCO, et al. Multilayer perceptron network and Vyazovkin method applied to the non-isothermal kinetic study of the interaction between lumefantrine and molecularly imprinted polymer. J Therm Anal Calorim . 2021;145(5):2441-9.
Freitas-Marques MB, Araujo BCR, Fernandes C, Mussel WN, Sebastião RCO, Yoshida MI. Kinetics of lumefantrine thermal decomposition employing isoconversional models and artificial neural network. J Braz Chem Soc. 2020;31(3):512-22.
Freitas-Marques MB, Araujo BCR, Mussel WN, Sebastião RCO, Yoshida MI. Kinetics study and Hirshfeld surface analysis for atorvastatin calcium trihydrate and furosemide system. Thermochim Acta. 2019;682:178408-18.
Dera P, Prewitt CT, Japel S, Bish DL, Johnston CT. Pressure-controlled polytypism in hydrous layered materials. Am Mineral. 2003;88(10):1428-35.
Gamoudi S, Srasra E. Green synthesis and characterization of colored Tunisian clays: cosmetic applications. Appl Clay Sci . 2018;165:17-21.
Gamoudi S, Srasra E. Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications. Appl Clay Sci . 2017;146:162-6.
Ilić B, Radonjanin V, Malešev M, Zdujić M, Mitrović A. Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Appl Clay Sci . 2016;123:173-81.
Iwasaki T, Onodera Y, Torii K. Rheological properties of organophilic synthetic hectorites and saponites. Clays Clay Miner . 1989;37:248-57.
Jaafar N, Rhaiem HB, Amara ABH. Crystallographic, vibrational, thermal and electrochemical properties of nacrite-NH4Cl nanohybrid. Appl Clay Sci . 2016;132-133:600-10.
Le Bail, A. Whole powder pattern decomposition methods and applications: A retrospection Powder Diffr. 2005;20(4):316-26.
López-Galindo A, Viseras C, Cerezo P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci . 2007;36(1-3):51-63.
Marosz M, Kowalczyk A, Gil B, Chmielarz L. Acid-treated clay minerals as catalysts for dehydration of methanol and ethanol. Clays Clay Miner . 2020;68(1):23-37.
Matike DME, Ekosse GIE, Ngole VM. Physico-chemical properties of clayey soils used traditionally for cosmetics in Eastern Cape, South Africa. Int J Phys Sci. 2011;6(33):7557-66.
Mattioli M, Giardini L, Roselli C, Desideri D. Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Appl Clay Sci . 2016;119:449-54.
Moore DM, Reynolds RC. X-ray diffraction and the identification and analysis of clay minerals. Oxford university press Oxford. 1999; 34(1):210-1.
Olowe AA, Refait P, Genin JMR. Superparamagnetic behaviour of goethite prepared in sulphated medium. Hyperfine Interact. 1990; 57: 2037-43.
Padilla-Ortega E, Medellín-Castillo N, Robledo-Cabrera A. Comparative study of the effect of structural arrangement of clays in the thermal activation: evaluation of their adsorption capacity to remove Cd (II). J Environ Chem Eng. 2020;8(4):103850-9.
Patel SS, Patel MS, Patel NM. Flowability testing of directly compressible excipients according to british pharmacopoeia. J Pharm Res. 2009; 8(2):66-9.
Peterson VK. Lattice parameter measurement using Le Bail versus structural (Rietveld) refinement: A caution for complex, low symmetry systems. Powder Diffr . 2005;20(1):14-7.
Silva-Valenzuela MG, Chambi-Peralta MM, Sayeg IJ, de Souza Carvalho FM, Wang SH, Valenzuela-Díaz FR. Enrichment of clay from Vitoria da Conquista (Brazil) for applications in cosmetics. Appl Clay Sci . 2018;155:111-19.
Silva CRG, Fialho SL, Barbosa B, Araujo BCR, Carneiro G, Sebastião RCO, Mussel WN, Yoshida MI, Freitas-Marques MB. Compatibility by a nonisothermal kinetic study of azathioprine associated with usual excipients in the product quality review process. J Braz Chem Soc . 2021;32(3):638-51.
Silva MLG, Fortes AC, Tomé AR, Silva Filho EC, Freitas RM, Soares-Sobrinho JL, Leite CMS, Soares MFLR. The effect of natural and organophilic palygorskite on skin wound healing in rats. Braz J Pharm Sci . 2013;49(4):729-36.
Silva Filho EA, Vazzoler FSD, Vazzoler H, Uliana F, Diaz FR. Organophilic clays and their application in atrazine adsorption. Cerâmica. 2021;67(382):158-63.
Silva PSC, Oliveira SMB, Farias L, Fávaro DIT, Mazzilli BP. Chemical and radiological characterization of clay minerals used in pharmaceutics and cosmetics. Appl Clay Sci . 2011;52(1-2):145-49.
Silva Favero J, dos Santos V, Weiss-Angeli V, Gomes LB, Veras DG, Dani N, et al. Evaluation and characterization of Melo bentonite clay for cosmetic applications. Appl Clay Sci . 2019;175:40-6.
Teixeira CE, Brandão PRG, Nunes RW. Methodological reconstruction of dioctahedral 1: 1 phyllosilicate polytypes. Appl Clay Sci . 2017;146:201-5.
United States Pharmacopeial Convention (Ed.). United States Pharmacopeia, 41st ed. Rockville. 2018.
Vyazovkin S. Isoconversional kinetics of thermally stimulated processes, Isoconversional Kinetics of Thermally Stimulated Processes. Springer. 2015.
Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta . 2014;590:1-23.
Yan Y, Wang H. In-situ high temperature x-ray diffraction study of dickite. Appl Clay Sci . 2018;163:137-45.
Yendluri R, Lvov Y, de Villiers MM, Vinokurov V, Naumenko E, Tarasova E, et al. Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. J Pharm Sci . 2017;106(10):3131-39.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.