Encapsulation of benznidazole in nanostructured lipid carriers and increased trypanocidal activity in a resistant Trypanosoma cruzi strain
DOI:
https://doi.org/10.1590/s2175-97902023e22111Keywords:
Drug delivery systems, Lipid nanoparticles, Nanomedicine, Neglected diseases, Poorly water-soluble drugs, Thermal analysisAbstract
Chagas disease is a neglected parasitic disease caused by Trypanosoma cruzi, whose treatment has remained unsatisfactory for over 50 years, given that it is limited to two drugs. Benznidazole (BZN) is an efficient antichagasic drug used as the first choice, although its poor water-solubility, irregular oral absorption, low efficacy in the chronic phase, and various associated adverse effects are limiting factors for treatment. Incorporating drugs with such characteristics into nanostructured lipid carriers (NLC) is a promising alternative to overcome these limiting obstacles, enhancing drug efficacy and bioavailability while reducing toxicity. Therefore, this study proposed NLC-BZN formulations in different compositions prepared by hot-melt homogenization followed by ultrasound, and the optimized formulation was characterized by FTIR, DRX, DSC, and thermogravimetry. Biological activities included in vitro membrane toxicity (red blood cells), fibroblast cell cytotoxicity, and trypanocidal activity against epimastigotes of the Colombian strain of T. cruzi. The optimized NLC-BZN had a small size (110 nm), negative zeta potential (-18.0 mV), and high encapsulation (1.64% of drug loading), as shown by infrared spectroscopy, X-ray diffraction, and thermal analysis. The NLC-BZN also promoted lower in vitro membrane toxicity (<3% hemolysis), and 50% cytotoxic concentration (CC50) for NLC-BZN in L929 fibroblast cells (110.7 µg/mL) was twice the value as the free BZN (51.3 µg/mL). Our findings showed that the NLC-BZN had higher trypanocidal activity than free BZN against the epimastigotes of the resistant Colombian strain, and this novel NLC-BZN formulation proved to be a promising tool in treating Chagas disease and considered suitable for oral and parenteral administration.
Downloads
References
Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014,11(12):1865-1883.
Almeida OP, Marcial SPS, Gouveia FPP, Carneiro G. Validation of a chromatographic analytical method for quantification of benznidazole incorporated in nanostructured lipid formulations. J Braz Chem Soc. 2016;28(2):236-241.
Argimón M, Romero M, Miranda P, Mombrú Á, Miraballes I, Zimet P, et al. Development and characterization of vitamin A-Loaded solid lipid nanoparticles for topical application. J Braz Chem Soc. 2016;28(07):1177-1184.
Bahari LAS, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull. 2016;6(2):143-151.
Beloqui A, del Pozo-Rodríguez A, Isla A, Rodríguez-Gascón A, Solinís MÁ. Nanostructured lipid carriers as oral delivery systems for poorly soluble drugs. J Drug Deliv Sci Technol. 2017;42:144-154.
Bortoluzzi AAM, Staffen IV, Banhuk FW, Griebler A, Matos PK, Ayala TS, et al. Determination of chemical structure and anti-Trypanosoma cruzi activity of extracts from the roots of Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima. Saudi J Biol Sci. 2021;28(1):99-108.
Branquinho RT, Mosqueira VC, de Oliveira-Silva JC, Simoes-Silva MR, Saude-Guimaraes DA, de Lana M. Sesquiterpene lactone in nanostructured parenteral dosage form is efficacious in experimental Chagas disease. Antimicrob Agents Chemother. 2014;58(4):2067-2075.
Bruxel F, Laux M, Wild LB, Fraga M, Koester LS, Teixeira HF. Nanoemulsões como sistemas de liberação parenteral de fármacos. Quim Nova. 2012;35(9):1827-1840.
Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev. 2007;59(6):379-402.
Castro JA, de Mecca MM, Bartel LC. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol. 2006;25(8):471-479.
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.
de Freitas MV, Netto Rde C, da Costa Huss JC, de Souza TM, Costa JO, Firmino CB, et al. Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicol In Vitro. 2008;22(1):219-224.
de Melo PN, de Caland LB, Fernandes-Pedrosa MF, da Silva-Júnior AA. Designing and monitoring microstructural properties of oligosaccharide/co-solvent ternary complex particles to improve benznidazole dissolution. J Mater Sci. 2017,53(4):2472-2483.
Fernandes RS, Silva JO, Seabra HA, Oliveira MS, Carregal VM, Vilela JMC, et al. alpha-Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo. Biomed Pharmacother. 2018;103:1348-1354.
Ferraz LRM, Alves AEG, Nascimento D, Amariz IAE, Ferreira AS, Costa SPM, et al. Technological innovation strategies for the specific treatment of Chagas disease based on Benznidazole. Acta Trop. 2018;185:127-132.
Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987;81(5):755-759.
Fini A, Cavallari C, Ospitali F, Gonzalez-Rodriguez ML. Theophylline-loaded compritol microspheres prepared by ultrasound-assisted atomization. J Pharm Sci. 2011;100(2):743-757.
Fonseca-Berzal C, Palmeiro-Roldan R, Escario JA, Torrado S, Aran VJ, Torrado-Santiago S, et al. Novel solid dispersions of benznidazole: preparation, dissolution profile and biological evaluation as alternative antichagasic drug delivery system. Exp Parasitol. 2015;149:84-91.
Gaba B, Fazil M, Ali A, Baboota S, Sahni JK, Ali J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv. 2015;22(6):691-700.
Garala K, Joshi P, Shah M, Ramkishan A, Patel J. Formulation and evaluation of periodontal in situ gel. Int J Pharm Investig. 2013,3(1):29-41.
Garcia-Millan E, Quintans-Carballo M, Otero-Espinar FJ. Solid-state characterization of triamcinolone acetonide nanosuspensiones by X-ray spectroscopy, ATR Fourier transforms infrared spectroscopy and differential scanning calorimetry analysis. Data Brief. 2017;15:133-137.
Glavcheva-Laleva Z, Kerekov S, Pavlov D, Glavchev I. Obtaining of modifiers for reduced friction by еsterification of waste glycerol from biodiesel production and sylfat 2. Chem Eng Sci. 2015,3(1):1-6.
Gonullu U, Uner M, Yener G, Karaman EF, Aydogmus Z. Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery. Acta Pharm. 2015;65(1):1-13.
Kiefer J, Frank K, Zehentbauer FM, Schuchmann HP. Infrared spectroscopy of bilberry extract water-in-oil emulsions: sensing the water-oil interface. Biosensors (Basel). 2016,6(2):13.
Lamas MC, Villaggi L, Nocito I, Bassani G, Leonardi D, Pascutti F, et al. Development of parenteral formulations and evaluation of the biological activity of the trypanocide drug benznidazole. Int J Pharm. 2006;307(2):239-243.
Leonardi D, Salomon CJ. Unexpected performance of physical mixtures over solid dispersions on the dissolution behavior of benznidazole from tablets. J Pharm Sci . 2013;102(3):1016-1023.
Leonardi D, Salomon CJ, Lamas MC, Olivieri AC. Development of novel formulations for Chagas’ disease: optimization of benznidazole chitosan microparticles based on artificial neural networks. Int J Pharm . 2009;367(1-2):140-147.
Li H, Chen M, Su Z, Sun M, Ping Q. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. Int J Pharm . 2016;511(1):524-537.
Li HJ, Zhang AQ, Hu Y, Sui L, Qian DJ, Chen M. Large-scale synthesis and self-organization of silver nanoparticles with Tween 80 as a reductant and stabilizer. Nanoscale Res Lett. 2012,7(1):612.
Li Z, Yu L, Zheng L, Geng F. Studies on crystallinity state of puerarin loaded solid lipid nanoparticles prepared by double emulsion method. J Therm Anal Calorim. 2009;99(2):689-693.
Lima AA, Soares-Sobrinho JL, Silva JL, Correa-Junior RA, Lyra MA, Santos FL, et al. The use of solid dispersion systems in hydrophilic carriers to increase benzonidazole solubility. J Pharm Sci . 2011;100(6):2443-2451.
Marcial SPdS, Carneiro G, Leite EA. Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment. J Nanopart Res. 2017;19(10):340.
Maximiano FP, Costa GH, de Sa Barreto LC, Bahia MT, Cunha-Filho MS. Development of effervescent tablets containing benzonidazole complexed with cyclodextrin. J Pharm Pharmacol. 2011a;63(6):786-793.
Maximiano FP, Costa GHY, Souza Jd, Cunha-Filho MSSd. Caracterização físico-química do fármaco antichagásico benznidazol. Quim Nova . 2010;33(8):1714-1719.
Maximiano FP, de Paula LM, Figueiredo VP, de Andrade IM, Talvani A, Sa-Barreto LC, et al. Benznidazole microcrystal preparation by solvent change precipitation and in vivo evaluation in the treatment of Chagas disease. Eur J Pharm Biopharm. 2011b;78(3):377-384.
Meira CS, Guimaraes ET, Dos Santos JA, Moreira DR, Nogueira RC, Tomassini TC, et al. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine. 2015;22(11):969-974.
Moreno M, D’Avila DA, Silva MN, Galvao LM, Macedo AM, Chiari E, et al. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease. Mem Inst Oswaldo Cruz. 2010;105(7):918-924.
Morilla MJ, Benavidez P, Lopez MO, Bakas L, Romero EL. Development and in vitro characterisation of a benznidazole liposomal formulation. Int J Pharm . 2002;249(1-2):89-99.
Morilla MJ, Montanari JA, Prieto MJ, Lopez MO, Petray PB, Romero EL. Intravenous liposomal benznidazole as trypanocidal agent: increasing drug delivery to liver is not enough. Int J Pharm . 2004;278(2):311-318.
Morilla MJ, Prieto MJ, Romero EL. Benznidazole vs benznidazole in multilamellar liposomes: how different they interact with blood components? Mem Inst Oswaldo Cruz . 2005;100(2):213-219.
Morilla MJ, Romero EL. Nanomedicines against Chagas disease: an update on therapeutics, prophylaxis and diagnosis. Nanomedicine (Lond). 2015;10(3):465-481.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63.
Pan American Health Organization (PAHO). Enfermedade de Chagas. 2020. Available at https://www.paho.org/hq/index.php?option=com_topics&view=article&id=10&Itemid=40743⟨=es
» https://www.paho.org/hq/index.php?option=com_topics&view=article&id=10&Itemid=40743⟨=es
Palmeiro-Roldan R, Fonseca-Berzal C, Gomez-Barrio A, Aran VJ, Escario JA, Torrado-Duran S, et al Development of novel benznidazole formulations: physicochemical characterization and in vivo evaluation on parasitemia reduction in Chagas disease. Int J Pharm . 2014;472(1-2):110-117.
Pereira PML, Camargo PG, Fernandes BT, Flores-Junior LAP, Dias LRS, Lima CHS, et al. In vitro evaluation of antitrypanosomal activity and molecular docking of benzoylthioureas. Parasitol Int. 2021;80:102225.
Perez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82-94.
Prata A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis. 2001;1(2):92-100.
Rahman Z, Zidan AS, Khan MA. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur J Pharm Biopharm . 2010,76(1):127-137.
Ridolfi DM, Marcato PD, Machado D, Silva RA, Justo GZ, Durán N. In vitro cytotoxicity assays of solid lipid nanoparticles in epithelial and dermal cells. J Phys: Conf Ser. 2011;304:012032.
Romero EL, Morilla MJ. Nanotechnological approaches against Chagas disease. Adv Drug Deliv Rev. 2010;62(4-5):576-588.
Salomon CJ. First century of Chagas’ disease: an overview on novel approaches to nifurtimox and benzonidazole delivery systems. J Pharm Sci . 2012;101(3):888-894.
Scalise ML, Arrua EC, Rial MS, Esteva MI, Salomon CJ, Fichera LE. Promising efficacy of benznidazole nanoparticles in acute Trypanosoma cruzi murine model: In-Vitro and In-Vivo studies. Am J Trop Med Hyg. 2016;95(2):388-393.
Scholer N, Hahn H, Muller RH, Liesenfeld O. Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages. Int J Pharm . 2002;231(2):167-176.
Seremeta KP, Arrua EC, Okulik NB, Salomon CJ. Development and characterization of benznidazole nano-and microparticles: A new tool for pediatric treatment of Chagas disease? Colloids Surf B. 2019;177:169-177.
Simonazzi A, Davies C, Cid AG, Gonzo E, Parada L, Bermudez JM. Preparation and characterization of poloxamer 407 solid dispersions as an alternative strategy to improve benznidazole bioperformance. J Pharm Sci . 2018;107(11):2829-2836.
Soares-Sobrinho JL, de La Roca Soares MF, Lopes PQ, Correia LP, de Souza FS, Macedo RO, et al. A preformulation study of a new medicine for Chagas disease treatment: physicochemical characterization, thermal stability, and compatibility of benznidazole. AAPS PharmSciTech. 2010;11(3):1391-1396.
Soares-Sobrinho JL, Santos FL, Lyra MA, Alves LD, Rolim LA, Lima AA, et al. Benznidazole drug delivery by binary and multicomponent inclusion complexes using cyclodextrins and polymers. Carbohydr Polym. 2012;89(2):323-330.
Soares-Sobrinho JL, Soares MFdLR, Labandeira JJT, Alves LDS, Rolim-Neto PJ. Improving the solubility of the antichagasic drug benznidazole through formation of inclusion complexes with cyclodextrins. Quim Nova . 2011;34(9):1534-1538.
Soeiro MNC, de Souza EM, da Silva CF, Batista DG, Batista MM, Pavao BP, et al. In vitro and in vivo studies of the antiparasitic activity of sterol 14alpha-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob Agents Chemother. 2013;57(9):4151-4163.
Streck L, de Araújo MM, de Souza I, Fernandes-Pedrosa MF, do Egito EST, de Oliveira AG, et al. Surfactant-cosurfactant interactions and process parameters involved in the formulation of stable and small droplet-sized benznidazole-loaded soybean O/W emulsions. J Mol Liq. 2014;196:178-186.
Streck L, Sarmento VH, Machado PR, Farias KJ, Fernandes-Pedrosa MF, da Silva-Junior AA. Phase transitions of isotropic to anisotropic biocompatible lipid-based drug delivery systems overcoming insoluble benznidazole loading. Int J Mol Sci. 2016;17(7):981.
Tessarolo LD, de Menezes R, Mello CP, Lima DB, Magalhaes EP, Bezerra EM, et al. Nanoencapsulation of benznidazole in calcium carbonate increases its selectivity to Trypanosoma cruzi. Parasitology. 2018;145(9):1191-1198.
The United States Pharmacopeia and National Formulary (USP39-NF34). Rockville: United States Pharmacopeial Convention; 2016.
Vinuesa T, Herráez R, Oliver L, Elizondo E, Acarregui A, Esquisabel A, et al. Benznidazole nanoformulates: a chance to improve therapeutics for Chagas disease. Am J Trop Med Hyg . 2017;97(5):1469-1476.
Wulff-Perez M, de Vicente J, Martin-Rodriguez A, Galvez-Ruiz MJ. Controlling lipolysis through steric surfactants: new insights on the controlled degradation of submicron emulsions after oral and intravenous administration. Int J Pharm . 2012;423(2):161-166.
Zingales B, Araujo RG, Moreno M, Franco J, Aguiar PH, Nunes SL, et al. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Mem Inst Oswaldo Cruz . 2015;110(3):433-444.
World Health Organization (WHO). Chagas disease (American trypanosomiasis). 2020. Available at: http://www.who.int/chagas/en/
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.