Development of a validated stability-indicating HPLC- DAD method for dasabuvir and the characterization of its degradation products using LC-QToF-MS/MS

Authors

  • Rafael Ramos Silva Programa de Pós-Graduação em Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil
  • Cézar Augusto da Cruz Amorim Laboratório de Química e Inovação Terapêutica, Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brasil
  • Maria do Carmo Alves Lima Laboratório de Química e Inovação Terapêutica, Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brasil
  • Marcelo Montenegro Rabello Programa de Pós-Graduação em Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil SCImago image Laboratório de Química Teórica Medicinal, Universidade Federal de Pernambuco, Recife, PE, Brasil
  • Marcelo Zaldini Hernandes cesar.sandrade@ufpe.br
  • Moacyr Jesus Barreto de Melo Rêgo Programa de Pós-Graduação em Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil https://orcid.org/0000-0002-1883-6012
  • Maira Galdino da Rocha Pitta Programa de Pós-Graduação em Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil
  • Maria Danielly Lima de Oliveira Programa de Pós-Graduação em Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil
  • César Augusto Souza de Andrade Programa de Pós-Graduação em Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil

DOI:

https://doi.org/10.1590/s2175-97902023e22009

Keywords:

Dasabuvir, Degradation products, Liquid chromatography, Stability study

Abstract

A stability-indicating HPLC-DAD method was developed and validated for the simultaneous determination of dasabuvir and its degradation products in the pharmaceutical formulation. The proposed method utilized a Symmetry® C18 (4.6 x 75 mm, 3.5 µm) column, and the mobile phase consisted of an isocratic elution of formic acid (0.1%) and acetonitrile (55:45, v/v), at a flow of 1 mL min-1; analytes were detected at 244 nm. Dasabuvir was submitted to different stress degradation conditions, such as acidic, alkaline, neutral, thermal, oxidative and photolytic, and the structural elucidation of degradation products was performed using LC-QToF-MS/MS. The HPLC-DAD stability-indicating method was validated for selectivity, linearity, limit of detection and quantification, accuracy, precision and robustness, according to ICH guidelines. Dasabuvir produced two degradation products (DP1 and DP2) from the alkaline stress conditions, which were characterized in negative ion mode. Dasabuvir was linear in the range 9.78 to 136.92 µg mL-1, and DP and DP were linear in the range 2.9 to 20.2 µg mL-1 and 1.3 to 14.9 µg mL-1, respectively. The 1 2 recovery ranged between 99.16 and 100.86%, while precision ranged from 1.02 to 2.89%. As the method can effectively separate the dasabuvir from its degradation products and quantitate them, it may be employed as a stability-indicating method for the pharmaceutical formulation.

Downloads

Download data is not yet available.

References

Alves RJ, Fernandes DEAS, Souza FEM, Oliveira MC, Silvanos TC. 2014. N-substituted chiral aromatic oxazolidines, synthesis process, pharmaceutical composition and use: Google Patents.

Alvira E, Mayoral JA, García JI. Molecular modelling study of β-cyclodextrin inclusion complexes. Chem Phys Lett. 1997;271(1-3):178-184.

Bakhtiar R, Hop CE, Walker RB. Effect of cyclodextrins on the hydrolysis of an oxazolidine prodrug of (1R,2S)- (-)-ephedrine-cis-2-(4-methoxyphenyl)-3, 4-dimethyl- 5-phenyloxazolidine. Rapid Commun Mass Spectrom. 1997;11(6):598-602.

Campos JF, Pereira MC, Sena WLB, Martins CGB, de Oliveira JF, Amorim CAC, et al. Synthesis and in vitro anticancer activity of new 2-thioxo-oxazolidin-4-one derivatives. Pharmacol Rep. 2017;69(4):633-641.

Cavalcanti IM, Mendonca EA, Lira MC, Honrato SB, Camara CA, Amorim RV, et al. The encapsulation of beta-lapachone in 2-hydroxypropyl-beta-cyclodextrin inclusion complex into liposomes: a physicochemical evaluation and molecular modeling approach. Eur J Pharm Sci. 2011;44(3):332-340.

Carvalho SG, Siqueira LA, Zanini MS, Matos APS, Quaresma CH, da Silva LM, et al. Physicochemical and in vitro biological evaluations of furazolidone-based β-cyclodextrin complexes in Leishmania amazonenses. Res Vet Sci. 2018;119:143-153.

Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech. 2005;6(2):E329-E357.

Choe HW, Park KS, Labahn J, Granzin J, Kim CJ, Buldt G. Crystallization and preliminary X-ray diffraction studies of alpha-cyclodextrin glucanotransferase isolated from Bacillus macerans. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 2):348-349.

Cirri M, Maestrelli F, Orlandini S, Furlanetto S, Pinzauti S, Mura P. Determination of stability constant values of flurbiprofen-cyclodextrin complexes using different techniques. J Pharm Biomed Anal. 2005;37(5):995-1002.

Dahiya S, Pathak K. Physicochemical characterization and dissolution enhancement of aceclofenac-hydroxypropyl beta-cyclodextrin binary systems. PDA J Pharm Sci Technol. 2006;60(6):378-388.

Fauziah CI, Zaibunnisa AH, Osman H, Aida WMW. Thermal analysis and surface morphology study of cholesterol: β-cyclodextrin inclusion complex. Adv Mater Res. 2013;812:221-225.

Gould S, Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food Chem Toxicol. 2005;43(10):1451-1459.

Halgren TA. MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem. 1999;20(7):720-729.

Hara T, Hirayama F, Arima H, Yamaguchi Y, Uekama K. Prominent solubilizing effect of 2-hydroxypropyl-β- cyclodextrin on a new thiazolidine derivative (FPFS-410) with antidiabetic and lipid-lowering activities through inclusion complex formation. J Inclusion Phenom Macrocyclic Chem. 2006;56(1):135-139.

Higuchi T, Connors KA. Phase-solubility techniques. Adv Anal Chem Instrum. 1965;4:117-212.

Lima MCA, Pitta MGR, Pitta IR, Pereira, MC, Amorim CAC, Rego MJBM, et al. Derivados 2-Tioxo-Oxazolidínicos- N-Substituídos potencialmente úteis na terapia anticâncer. Patent No. BR102015016060A2. 2015.

Liu H, Yang G, Tang Y, Cao D, Qi T, Qi Y, et al. Physicochemical characterization and pharmacokinetics evaluation of beta-caryophyllene/beta-cyclodextrin inclusion complex. Int J Pharm. 2013;450(1-2):304-310.

Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm . 2005;302(1- 2):18-28.

Mendonca EA, Lira MC, Rabello MM, Cavalcanti IM, Galdino SL, Pitta IR, et al. Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS PharmSciTech . 2012;13(4):1355-1366.

Miletic T, Kyriakos K, Graovac A, Ibric S. Spray-dried voriconazole-cyclodextrin complexes: solubility, dissolution rate and chemical stability. Carbohydr Polym. 2013;98(1):122- 131.

Ouyang D, Smith SC. Computational pharmaceutics: application of molecular modeling in drug delivery.1st ed. Wiley; Chichester. 2015.

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3(1):1-14.

Pandit N, Singla RK, Shrivastava B. Current updates on oxazolidinone and its significance. Int J Med Chem. 2012;2012:159285.

Piel G, Dive G, Evrard B, Van Hees T, de Hassonville SH, Delattre L. Molecular modeling study of beta- and gamma- cyclodextrin complexes with miconazole. Eur J Pharm Sci . 2001;13(3):271-279.

Rasheed A, Ashok Kumar CK, Sravanthi VVNSS. Cyclodextrins as drug carrier molecule: a review. Sci Pharm. 2008;76(4):567-598.

Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, et al. Structures of the common cyclodextrins and their larger analogues-beyond the doughnut. Chem Rev. 1998;98(5):1787-1802.

Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012a;2012:195727.

Silva CV, Barbosa JA, Ferraz MS, Silva NH, Honda NK, Rabello MM, et al. Molecular modeling and cytotoxicity of diffractaic acid: HP-beta-CD inclusion complex encapsulated in microspheres. Int J Biol Macromol. 2016;92:494-503.

Sofian ZM, Shafee SS, Abdullah JM, Osman H, Razak SA. Evaluation of the cytotoxicity of levodopa and its complex with hydroxypropyl-ß-cyclodextrin (hp-ß-cd) to an astrocyte cell line. Malays J Med Sci. 2014;21(Spec Issue):6-11.

Songngam S, Sukwattanasinitt M, Siralertmukul K, Sawasdee P. A 5,7-dimethoxyflavone/hydroxypropyl-β-cyclodextrin inclusion complex with anti-butyrylcholinesterase activity. AAPS PharmSciTech . 2014;15(5):1189-1196.

Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: Applications. J Pharm BioAllied Sci. 2010;2(2):72-79.

Treib J, Baron JF, Grauer MT, Strauss RG. An international view of hydroxyethyl starches. Intens Care Med. 1999;25(3):258-268.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem . 2010;31(2):455-461.

Wenz G. Cyclodextrins as building blocks for supramolecular structures and functional units. Angewandte Chemie Int. 1994;33(8):803-822.

Zhao Q, Ye Z, Su Y, Ouyang D. Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques. Acta Pharm Sin B. 2019;9(6):1241-1252.

Zhang WF, Zhou HY, Chen XG, Tang SH, Zhang JJ. Biocompatibility study of theophylline/chitosan/beta- cyclodextrin microspheres as pulmonary delivery carriers. J Mater Sci Mater Med. 2009;20(6):1321-1330.

Downloads

Published

2023-07-03

Issue

Section

Original Article

How to Cite

Development of a validated stability-indicating HPLC- DAD method for dasabuvir and the characterization of its degradation products using LC-QToF-MS/MS. (2023). Brazilian Journal of Pharmaceutical Sciences, 59. https://doi.org/10.1590/s2175-97902023e22009