Aluminum toxicity induced Alzheimer’s Disease and its potential treatment using antioxidants - a review

Authors

  • Rishi Choudhury Deemed to be University. Institute of Pharmaceutical Sciences, Mangalore, Karnataka, India
  • Harsha Ashtekar Deemed to be University. Institute of Pharmaceutical Sciences, Mangalore, Karnataka, India
  • Kartik B. Khot Deemed to be University. Institute of Pharmaceutical Sciences, Mangalore, Karnataka, India
  • Magrita Malngiang Deemed to be University. Institute of Pharmaceutical Sciences, Mangalore, Karnataka, India
  • Merugumolu Vijay Kumar Lovely Professional University. Lovely Institute of technology, Punjab, India https://orcid.org/0000-0002-8366-6312

DOI:

https://doi.org/10.1590/s2175-97902023e21587

Keywords:

Alzheimer’s Disease;, Aluminum;, Toxicity;, Oxidative stress;, Neurodegeneration

Abstract

Over the years, a handful of drugs have been approved to be used in the fight against Alzheimer’s Disease but unfortunately none of these drugs have proven to be solid-treatments. Alzheimer’s Disease is one of the most prominent diseases observed in the elderly population. In this review article, we discuss how aluminum toxicity can lead to neuro degeneration. Aluminum is abundantly present on the earth’s crust and hence becomes easily accessible to man. This makes it an obvious choice in the preparation of numerous substances, packaging, etc. Such wide usage of the metal can pave an easy access to the body, leading to toxicities. Aluminum toxicity has been linked to oxidative stress which has an established relation with neurodegeneration and mitochondrial damage. We also discuss how consumption of antioxidants can be useful in combating oxidative stress.

Downloads

Download data is not yet available.

References

Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekant W, et al. Scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials on a request from european commission on safety of aluminium from dietary intake. EFSA J. 2008;754:1-122.

Alonso Vilatela ME, López-López M, Yescas-Gómez P. Genetics of alzheimer’s disease. Arch Med Res. 2012;43:622-631. https://doi.org/10.1016/j.arcmed.2012.10.017

» https://doi.org/10.1016/j.arcmed.2012.10.017

Annaert W, Cupers P, Saftig P, Strooper B. Presenilin function in APP processing. Annals of the New York Academy of Sciences, 2006;920(1):158-164. doi: 10.1111/j.1749-6632.2000.tb06917.x

» https://doi.org/10.1111/j.1749-6632.2000.tb06917.x

Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest. 2005;115(6):1449-1457. https://doi.org/10.1172/JCI24761

» https://doi.org/10.1172/JCI24761

Biasiotto G, Di Lorenzo D, Archetti S, Zanella I. Iron and Neurodegeneration: Is Ferritinophagy the Link? Mol Neurobiol.2016;53:5542-5574. https://doi.org/10.1007/s12035-015-9473-y

» https://doi.org/10.1007/s12035-015-9473-y

Chen P, Miah MR, Aschner M. Metals and neurodegeneration. F1000Research. 2016;5:1-12. https://doi.org/10.12688/f1000research.7431.1

» https://doi.org/10.12688/f1000research.7431.1

Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71(2):621-629.

DeFuria J, Shea TB. Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: Roles of JNK and GSK- 3β. Brain Res. 2007;1181:74-82. https://doi.org/10.1016/j.brainres.2007.04.019

» https://doi.org/10.1016/j.brainres.2007.04.019

Desai V, Kaler SG. Role of copper in human neurological disorders. Am J Clin Nutr . 2008;88(3):855-858. https://doi.org/10.1093/ajcn/88.3.855s

» https://doi.org/10.1093/ajcn/88.3.855s

Exley C. The pro-oxidant activity of aluminum. Free Radic Biol Med. 2004;36(3):380-387. https://doi.org/10.1016/j.freeradbiomed.2003.11.017

» https://doi.org/10.1016/j.freeradbiomed.2003.11.017

Gilgun-Sherki Y, Melamed E, Offen D. Antioxidant treatment in Alzheimer’s disease: Current state. J Mol Neurosci. 2003;21(1):1-11. https://doi.org/10.1385/JMN:21:1:1

» https://doi.org/10.1385/JMN:21:1:1

Godwill AE, Paschaline UF, Friday NN, Marian NU. Mechanism and health effects of heavy metal toxicity in humans poisoning in the modern world - New tricks for an old dog? Intech Open. 2019:17-23.http://dx.doi.org/10.5772/ intechopen.82511

» http://dx.doi.org/10.5772/ intechopen.82511

Goedert M, Spillantini MG. A century of alzheimer’s disease. Science. 2006;314(5800):777-781. https://doi.org/10.1126/science.1132814

» https://doi.org/10.1126/science.1132814

Grundman M, 2018. Vitamin E and alzheimer disease : the basis for additional clinical trials. Am J Clin Nutr . 2000;71(2):630-636.

Hambidge M, Cousins RJ, Costello RB. Zinc and health: Current status and future directions: Introduction. J Nutr. 2000;130:1344-1349.

Kapaki EN, Zournas CP, Segdistsa IT, Xenos DS, Papageorgiou CT. Cerebrospinal fluid aluminum levels in Alzheimer’s disease.BiolPsychiatry. 1993;33(8-9):679-681. https://doi.org/10.1016/0006-3223(93)90114-S

» https://doi.org/10.1016/0006-3223(93)90114-S

Kiesswetter E, Schäper M, Buchta M., Schaller KH, Rossbach B, Scherhag H, et al. Longitudinal study on potential neurotoxic effects of aluminium: I. Assessment of exposure and neurobehavioural performance of Al welders in the train and truck construction industry over 4 years. Int Arch Occup Environ Health.2007;81(1):41-67. https://doi.org/10.1007/s00420-007-0191-2

» https://doi.org/10.1007/s00420-007-0191-2

Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev.2007;10(suppl 1):1-269. https://doi.org/10.1080/10937400701597766

» https://doi.org/10.1080/10937400701597766

Kwakye GF, Paoliello MMB, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-induced parkinsonism and Parkinson’s disease: Shared and distinguishable features. Int J Environ ResPublic Health. 2015;12(7):7519-7540. https://doi.org/10.3390/ijerph120707519

» https://doi.org/10.3390/ijerph120707519

Lee HJ, Park MK, Seo YR. Pathogenic mechanisms of heavy metal induced-Alzheimer’s disease. Toxicol Environ Health Sci. 2018;10(1):1-10. https://doi.org/10.1007/s13530-018-0340-x

» https://doi.org/10.1007/s13530-018-0340-x

Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM, et al. Chemicals used for the induction of Alzheimer’s disease-like cognitive dysfunctions in rodents. Biomed Res Ther. 2019;6(11):3460-3484. https://doi.org/10.15419/bmrat.v6i11.575

» https://doi.org/10.15419/bmrat.v6i11.575

Mason LH, Harp JP, Han DY. Pb neurotoxicity: Neuropsychological effects of lead toxicity. Biomed Res Int. 2014;840547:1-8. https://doi.org/10.1155/2014/840547

» https://doi.org/10.1155/2014/840547

Mathuranath PS, George A, Ranjith N, Justus S, Kumar MS, Menon R, et al. Incidence of Alzheimer’s disease in India: A 10 years follow-up study. Neurol. India.2012;60(6):625-630. https://doi.org/10.4103/0028-3886.105198

» https://doi.org/10.4103/0028-3886.105198

Mizuno D, Kawahara M. The molecular mechanisms of zinc neurotoxicity and the pathogenesis of vascular type senile dementia. Int J Mol Sci.2013;14(11):22067-22081. https://doi.org/10.3390/ijms141122067

» https://doi.org/10.3390/ijms141122067

Morita A, Abdireyim D, Kimura M, Itokawa Y. The effect of aging on the mineral status of female SAMP1 and SAMR1.Biol Trace Elem Res.2001;80(1):53-65. https://doi.org/10.1385/BTER:80:1:53

» https://doi.org/10.1385/BTER:80:1:53

Pereira C, Agostinho P, Moreira PI, Cardoso SM, Oliveira CR. Alzheimer’s disease-associated neurotoxic mechanisms and neuroprotective strategies. Curr Drug Targets CNS Neurol. Disord. 2005;4(4):383-403. https://doi.org/10.2174/1568007054546117

» https://doi.org/10.2174/1568007054546117

Van Der Zee J, Sleegers K, Broeckhoven C. Van. Invited Article: The Alzheimer disease-frontotemporal lobar degeneration spectrum. Neurology.2008;71(15):1191-1197. https://doi.org/10.1212/01.wnl.0000327523.52537.86

» https://doi.org/10.1212/01.wnl.0000327523.52537.86

Van Landeghem GF, D’Haese PC, Lamberts LV, Barata JD, De Broe ME. Aluminium speciation in cerebrospinal fluid of acutely aluminium-intoxicated dialysis patients before and after desferrioxamine treatment: A step in the understanding of the element’s neurotoxicity. Nephrol Dial Transplant. 1997;12(8):1692-1698. https://doi.org/10.1093/ndt/12.8.1692

» https://doi.org/10.1093/ndt/12.8.1692

Verstraeten SV, Nogueira LV, Schreier S, Oteiza PI. Effect of trivalent metal ions on phase separation and membrane lipid packing: Role in lipid peroxidation. Arch BiochemBiophys.1997;338(1):121-127. https://doi.org/10.1006/abbi.1996.9810

» https://doi.org/10.1006/abbi.1996.9810

Wang B, Du Y. Cadmium and its neurotoxic effects. OxidMedCellLongev. 2013;898034:1-12. https://doi.org/10.1155/2013/898034

» https://doi.org/10.1155/2013/898034

Yokel RA.The toxicology of aluminum in the brain: A review. Neurotoxicology.2000;21(5):813-828.

Yuan CY, Hsu GS, Lee YJ. Aluminum alters NMDA receptor 1A and 2A/B expression on neonatal hippocampal neurons in rats. J Biomed Sci. 2011;18(1):1-9. https://doi.org/10.1186/1423-0127-18-81

» https://doi.org/10.1186/1423-0127-18-81

Yuan CY, Lee YJ, Hsu GSW. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci . 2012;19(1):1-9. https://doi.org/10.1186/1423-0127-19-51

» https://doi.org/10.1186/1423-0127-19-51

Zarazúa S, Bürger S, Delgado JM., Jiménez-Capdeville ME, Schliebs R. Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP. Int J Dev.Neurosci. 2011;29(4):389-396. https://doi.org/10.1016/j.ijdevneu.2011.03.004

» https://doi.org/10.1016/j.ijdevneu.2011.03.004

Downloads

Published

2023-11-03

Issue

Section

Article

How to Cite

Aluminum toxicity induced Alzheimer’s Disease and its potential treatment using antioxidants - a review. (2023). Brazilian Journal of Pharmaceutical Sciences, 59, e21587. https://doi.org/10.1590/s2175-97902023e21587