Role of Brain Angiotensin-II in Development of Experimental Diabetic Nephropathy in Wistar Rats

Authors

  • Anubhav Kumar Singh Institute of Pharmaceutical Research, GLA University 17-Km Stone NH-2, Mathura-Delhi Highway, Chaumuhan, Uttar Pradesh, India https://orcid.org/0000-0002-6687-3686
  • Niraj Kumar Singh Institute of Pharmaceutical Research, GLA University 17-Km Stone NH-2, Mathura-Delhi Highway, Chaumuhan, Uttar Pradesh, India
  • Ahsas Goyal Institute of Pharmaceutical Research, GLA University 17-Km Stone NH-2, Mathura-Delhi Highway, Chaumuhan, Uttar Pradesh, India
  • Bhupesh Chander Semwal Institute of Pharmaceutical Research, GLA University 17-Km Stone NH-2, Mathura-Delhi Highway, Chaumuhan, Uttar Pradesh, India
  • Harlokesh Narayan Yadav All India Institute of Medical Sciences (AIIMS), Gautam Nagar, Ansari Nagar East, New Delhi, India

DOI:

https://doi.org/10.1590/

Keywords:

Diabetic nephropathy, Brain RAAS, Intracerebroventricular injection, Angiotensin Converting Enzyme

Abstract

The renin-angiotensin-aldosterone system (RAAS) plays a key role in diabetic nephropathy (DN). Angiotensin-II secreted during the RAAS pathway increases nephropathy. It stimulates oxidative stress which can quench nitric oxide. Reduced nitric oxide level aggravates Ang-II-induced vasoconstriction. Ang-II has also emerged as a central mediator of the glomerular hemodynamic changes that are associated with renal injury. Deletion of ACE2 is also noted due to increased Ang-II level which leads to the development of DN. We hypothesize that nephropathy caused by Ang-II in the periphery may be controlled by brain RAAS. ACE inhibitors and ARBs may show the renoprotective effect when administered through ICV without crossing the blood-brain barrier. DN was observed after 8 weeks of diabetes induction through alloxan. Administration of captopril and valsartan once and in combined therapy for 2 weeks, significantly reduced urine output, blood urea nitrogen, total protein in the urine, serum cholesterol, serum creatinine, serum triglycerides, and kidney/body weight ratio as compared to diabetic control rats. Further, combination therapy significantly increased the body weight and serum nitrate level as compared to diabetic control animals. However, increased ACE2 levels in the brain may reduce the sympathetic outflow and might have decreased the peripheral activity of Ang-II which shows beneficial effects in DN.

Downloads

Download data is not yet available.

References

Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome-a new world wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23(5):469-80.

Bakris GL, Weir MR. Angiotensin converting enzyme inhibitor associated elevation in serum creatinine. JAMA Intern Med. 2000;160:685-693.

Baltatu OC, Campos LA, Bader M. Local renin-angiotensin system & the brain: a continuous quest for knowledge. Peptides. 2011;32(5):1083-6.

Battle D, Soler MS, Ye M. ACE2 & Diabetes: ACE of ACE’s. Diabetes. 2010;59:2540-2548.

Baum T, Becker FT, Suberts EJ. Attenuation of pressor responces to intracerebroventricular angiotensin-I by angiotensin converting enzyme inhibitors & their effect on systemic blood pressure in conscious rats. Life Sci. 1983;32(12):1297-1303.

Bertoncello N, Moreira RP, Arita DY, Aragao DS, Watanbe IKM, Dantas PS, et al. Diabetic nephropathy induced by increased ACE gene dosage is associated with high renal level of angiotensin (1-7) & bradykinin. J Diabetes Res. 2015;1-13.

Campbell R, Sangalli F, Perticucci E, Aros C, Viscarra C, Perna A, et al. Effect of combined ACE inhibitor & angiotensin-II antagonist treatment in human chronic nephropathies. Kidney Int. 2003;63:1094-1103.

Chawla T, Sharma D, Singh A. Role of the renin-angiotensin system in diabetic nephropathy. World J Diabetes. 2010;1(5):141-5.

Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41.

Crackower MA, Sarao R, Oudit AY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin-converting & is an essential regulator of heart function. Am j physiol. 2002;17:822-828.

Doughue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme related carboxypeptidase (ACE2) converts angiotensin-I to angiotensin 1-9. Circ Res. 2000;87(5):E1-9.

Feng Y, Xia H, Cai Y, Halabi CM, Becker LK, Santos RA et al. Brain-selective overexpression of human angiotensin-converting enzyme type-2 attenuates neurogenic hypertension. Circ Res . 2010;106(2):373-82.

Fioretto P, Stechower CD, Mauer M. Heterogeneous nature of microalbuminuria in NIDDM: studies of endothelial function & renal structure. Diabetologia. 1998;41(2):233-6.

Giani JF, Munoz MC, Pons RA. Angiotensin (1-7) reduces proteinuria & diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2011;300(1):F272-82.

Goldberg IJ. Diabetic Dyslipidemia: Cause & Consequences. J Clin Endocrinol Metab. 2001;86(3):965-71.

Haley TJ, McCormick WG. Pharmacological effects produced by Intracerebral Infection of drugs in the conscious mouse. Brit J Pharmacol. 1957;12:12-15.

Jindal S, Singh, Balakumar P. Effect of bis(maltolato) oxovandiun (BMOV) in uric acid & sodium arsenite induced vascular endothelial dysfunction in rats. Int J Cardiol. 2008;128(3):383-91.

Kaveeshwar SA, Cornwall J. The current state of diabetes mellitus in India. Med J Aust. 2014;7(1):45-48.

Kelly DJ, Zhang Y, Naik MG, Gilbert RE. Aliskiren, a novel renin-inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Diabetologia . 2007;50(11):2398-404.

Kobori H, Kamiyama M, Bernard LMH, Navar G. Cardinal role of the intrarenal renin-angiotensin system in the pathogenesis of diabetic nephropathy. J Investig Med. 2013;61:256-264.

Kushwaha S, Malpani A, Aswar UM, Bodhankar SL, Malpani A, Shivakumar SJ. Effect of different anaesthetic agents on cardiovascular parameters in male Wistar rats. Res J Pharm Biol Chem Sci. 2011;2(2):685-690.

Leehey DJ, Singh AK, Alavi N, Singh R. Role of angiotensin-II in diabetic nephropathy. Kidney Int . 2000;58(77):593-598.

Lewis EJ, Hunsicker LG, Bain RR, Rohde RD. The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329:1456-1462.

Makaya T, Chatterjee S, Arundel P, Beuan C, Wright P. Severe hypercalcemic in diabetic ketoacidosis: a case report. Diabetes Care. 2013;36(4):1-2.

Maschio G, Alberti D, Janin G, Locatelli F, Mann JFE, Motolese M, et al. Effect of the ACE inhibitor benazepril on the progression of chronic renal insufficiency. N Engl J Med . 1996;334(15):939-45.

McKinley MJ, Allen AM, Mathai ML, May C. Brain angiotensin & body fluid homeostasis. Jpn J Physiol. 2001;51:271-289.

Mogenson CE. Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int . 1987;31:673-689.

Nakamura K, Shimizu S, Yanagita T, Nemoto T, Tamivchi K, Shimizu S, et al. Angiotensin-II acting on brain AT1 receptors induces adrenaline secretion & pressor responces in the rat. Sci Rep. 2014;4:1-8.

Onozato ML, Tojo A, Coto A, Fujta T, Wilcox CS. Oxidative stress & nitric oxide synthase in diabetic nephropathy: Effect of ACEI and ARB. Kidney Int . 2002;61(1):186-94.

Remmuzi G, Bertani T. Is glomerulosclerosis: a consequence of altered glomerular permeability to molecules. Kidney Int . 1990;38(3):384-94.

Remuzzi A, Petricucci E, Ruggennti P, Mosconi L, Limonta M, Remuzzi G, Angiotensin-converting enzyme inhibition improves glomerular size selectivity in IgA nephropathy. Kidney Int . 1991;39(6):1267-73.

Rosenfalck AM, Amdal T, Hislsted J, Madsbad S. Body composition adults with type 1 diabetes at onset & during the first year of insulin therapy. Diabet Med . 2002;19(5):417-23.

Ruster C, Wolf G. Renin-angiotensin aldosterone system: Pathophysiology role & Pharmacologic Inhibition. J Manag Care Pharm. 2007;13(8):S9-S20.

Santos RAS, Ferreira AJ, Braga TV, Bader M. Angiotensin-converting enzyme-2, angiotensin (1-7) & Mass receptor-new player of the renin-angiotensin system. J. Endocrinol. 2013;216 R1-R17.

Sharma V, Sharma PL. Role of different Molecular pathways in the development of diabetes-induced nephropathy. J Diabetes Metab. 2013;1-7.

Sharma VK, Kumar S, Patel HJ, Hugar S. Hypoglycemic activity of Ficus glomerata in alloxan induced diabetic rats. Int J Pharm Sci Rev Res. 2010;1(2):18-22.

Sinuani I, Averbukh Z, Gitelman I, Rapoport MJ, Sandbank J, Albeck M, et al. Mesangial cells initiate compensatory renal tubular hypertrophy via IL-10 induced TGF-β secretion: effect of the immunomodulator AS101 on this process. Am J Renal Physiol. 2006;291(2):F384-94.

Tikellis C, Bialkowski K, Pete J, Sheey K, Su Q, Johnston C, et al. ACE2 defeciency modifies renoprotection afforded by ACE inhibition in experimental diabetes. Diabetes . 2008;57:1018-1025.

Trevisan R, Dodesini AR, Lepore G. Lipids and Renal disease. J Am Soc Nephrol. 2006;17(4):S145-7.

Trinder P. Determination oxidase of glucose in blood using glucose with an alternative oxygen receptor. J Clin Pathol. 1969;22(2):158-61.

Trojacanec J, Zafirov D, Jakiovski K, Gjorgjievska K, Trojacanec P, Labaceuski N. Effect of dual RAAS blockade with candesartan & perindropril on functional renal test in STZ induced Diabetic nephropathy. Maced J Med Sci. 2013;6(3):219-226.

Unnikrishnan RI, Rema M, Pradeep R, Deepa M, Shanthirani CS, Deepa R, et al. Prevelance & risk factor of diabetic nephropathy in an urban south Indian population-The Chennai urban rural Epidemiology study. Diabetic Care. 2007;30:2019-2024.

Vaishya R, Singh J, Lal H. Effectof Irbesartanon Streptozotocin induced diabetic nephropathy: An Interventionary study. Indian J Clin Biochem. 2008;23(2):195-197

Vaziri ND, Sato T, Liang K. Molecule mechanism of altered cholesterol metabolism in focal glomerulosclerosis. Kidney Int . 2003;63(5):1756-63.

Vaziri ND. Molecular mechanism of lipid disorder in nephritic syndrome. Kidney Int . 2003;63:1964-1976

Viberti G, Mogenson CE, Groop LC, Pauls JF. Effect of Captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus & microalbuminuria. JAMA. 1994;271(4):275-279.

Zatz R, Anderson S, Meyer TW, Durin BR, Rennke HG, Brenner BM. Lowering of arterial blood pressure limits glomerulosclerosis in rats with renal ablation & in experimental diabetes. Kidney Int Suppl. 1987;20:S123-9.

Zhang K, Meng X, Li D, Yang J, Kong J, Hao P, et al. Angiotensin (1-7) attenuates the progression of STZ-induced diabetes renal injury better than angiotensin receptor blockade. Kidney Int . 2015;87(2):359-69.

Zini S, Zaluski MCF, Chauvel E, Roques BP, Corvol P, Cortes CL. Identification of metabolic pathway of brain angiotensin-II & III using specific amino peptidase inhibitors: Predominant role of angiotensin-III in the control of vasopressin release. Proc Natl Acad Sci U S A. 1996;93(21):11968-11973.

Downloads

Published

2023-09-04

Issue

Section

Article

How to Cite

Role of Brain Angiotensin-II in Development of Experimental Diabetic Nephropathy in Wistar Rats. (2023). Brazilian Journal of Pharmaceutical Sciences, 59. https://doi.org/10.1590/