Unraveling the complex link between vitamin D levels and cancer

Authors

  • Cristian Soza-Ried Universidad de las Américas, Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Santiago, Chile; Research department, Fundación Oncoloop, Santiago, Chile; Center of Nuclear Medicine & PET/CT Positronmed, Santiago, Chile; Positronpharma SA, Santiago, Chile https://orcid.org/0000-0001-9490-4083
  • Luciana Oliveira-Cruz Universidad de las Américas, Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Santiago, Chile
  • Pamela Salman Oncovida, Santiago, Chile

DOI:

https://doi.org/10.1590/

Keywords:

Vitamin D, Cancer, Molecular pathway

Abstract

Numerous studies have underscored the essential role of sunlight in vitamin D synthesis, while other studies have examined the association between dietary supplementation and vitamin D levels in different oncologic indications. In certain oncologic types, low levels of vitamin D correlate with a higher risk of cancer progression or poorer outcomes. On the contrary, the protective role of vitamin D remains ambiguous for some cancers. Given that the majority of cancer patients exhibit vitamin D deficiency or insufficiency, there have been suggestions to adopt supplementation strategies. However, vitamin D modulates and interacts with several molecular pathways. Therefore, it is crucial to contextualize the level and circumstances in which the action of vitamin D is observed. Distinct outcomes may emerge based on factors such as the method of assessing vitamin D levels, the size of the study populations, their genetic background, and the specific cancer type under investigation. In this article, we summarize some of the relevant studies examining the relationship between vitamin D levels and cancer. We further briefly outline the process of vitamin D synthesis and its effects on specific cellular pathways involved in cancer progression, highlighting essential considerations for future vitamin D assessments and supplementation approaches.

Downloads

Download data is not yet available.

References

Abnet CC, Chen Y, Chow WH, Gao YT, Helzlsouer KJ, Le Marchand L, et al. Circulating 25-hydroxyvitamin D and risk of esophageal and gastric cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am J Epidemiol. 2010;172(1):94-106. https://doi.org/10.1093/aje/kwq121

» https://doi.org/10.1093/aje/kwq121

Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res. 1997;12(6):915-921. https://doi.org/10.1359/jbmr.1997.12.6.915

» https://doi.org/10.1359/jbmr.1997.12.6.915

Arnold M, Pandeya N, Byrnes G, Renehan PAG, Stevens GA, Ezzati PM, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36-46. https://doi.org/10.1016/S1470-2045(14)71123-4

» https://doi.org/10.1016/S1470-2045(14)71123-4

Bises G, Kallay E, Weiland T, Wrba F, Wenzl E, Bonner E, et al. 25-hydroxyvitamin D3-1alpha-hydroxylase expression in normal and malignant human colon. J Histochem Cytochem. 2004;52(7):985-989. https://doi.org/10.1369/jhc.4B6271.2004

» https://doi.org/10.1369/jhc.4B6271.2004

Blutt SE, McDonnell TJ, Polek TC, Weigel NL. Calcitriol- induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2. Endocrinology. 2000;141(1):10-17. https://doi.org/10.1210/endo.141.1.7289

» https://doi.org/10.1210/endo.141.1.7289

Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167(9):4974-4980. https://doi.org/10.4049/jimmunol.167.9.4974

» https://doi.org/10.4049/jimmunol.167.9.4974

Chandler PD, Chen WY, Ajala ON, Hazra A, Cook N, Bubes V, et al. Effect of Vitamin D3 Supplements on Development of Advanced Cancer: A Secondary Analysis of the VITAL Randomized Clinical Trial. JAMA Netw Open. 2020;3(11):e2025850. https://doi.org/10.1001/jamanetworkopen.2020.25850

» https://doi.org/10.1001/jamanetworkopen.2020.25850

Chazelas E, Pierre F, Druesne-Pecollo N, Esseddik Y, Szabo de Edelenyi F, Agaesse C, et al. Nitrites and nitrates from food additives and natural sources and cancer risk: results from the NutriNet-Sante cohort. Int J Epidemiol. 2022;51(4):1106-1119. https://doi.org/10.1093/ije/dyac046

» https://doi.org/10.1093/ije/dyac046

Chen W, Dawsey SM, Qiao YL, Mark SD, Dong ZW, Taylor PR, et al. Prospective study of serum 25(OH)-vitamin D concentration and risk of oesophageal and gastric cancers. Br J Cancer. 2007;97(1):123-128. https://doi.org/10.1038/sj.bjc.6603834

» https://doi.org/10.1038/sj.bjc.6603834

Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De- orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase. J Biol Chem. 2003;278(39):38084-38093. https://doi.org/10.1074/jbc.M307028200

» https://doi.org/10.1074/jbc.M307028200

Chiu KC, Chuang LM, Yoon C. The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians. BMC Med Genet. 2001; 2: 2. https://doi.org/10.1186/1471-2350-2-2

» https://doi.org/10.1186/1471-2350-2-2

Clemens TL, Garrett KP, Zhou XY, Pike JW, Haussler MR, Dempster DW. Immunocytochemical localization of the 1,25-dihydroxyvitamin D3 receptor in target cells. Endocrinology . 1988;122(4):1224-1230. https://doi.org/10.1210/endo-122-4-1224

» https://doi.org/10.1210/endo-122-4-1224

Cong L, Wang WB, Liu Q, Du JJ. FokI Polymorphism of the Vitamin D Receptor Gene Is Associated with Susceptibility to Gastric Cancer: A Case-Control Study. Tohoku J Exp Med. 2015;236(3):219-224. https://doi.org/10.1620/tjem.236.219

» https://doi.org/10.1620/tjem.236.219

Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684-700. https://doi.org/10.1038/nrc2196

» https://doi.org/10.1038/nrc2196

Dou R, Ng K, Giovannucci EL, Manson JE, Qian ZR, Ogino S. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. Br J Nutr. 2016;115(9):1643-1660. https://doi.org/10.1017/S0007114516000696

» https://doi.org/10.1017/S0007114516000696

Esteban LM, Fong C, Amr D, Cock TA, Allison SJ, Flanagan JL, et al. Promoter-, cell-, and ligand-specific transactivation responses of the VDRB1 isoform. Biochem Biophys Res Commun. 2005;334(1):9-15. https://doi.org/10.1016/j.bbrc.2005.06.054

» https://doi.org/10.1016/j.bbrc.2005.06.054

Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer . 2014;14(5):342-357. https://doi.org/10.1038/nrc3691

» https://doi.org/10.1038/nrc3691

Fernandez-Garcia NI, Palmer HG, Garcia M, Gonzalez- Martin A, del Rio M, Barettino D, et al. 1alpha,25- Dihydroxyvitamin D3 regulates the expression of Id1 and Id2 genes and the angiogenic phenotype of human colon carcinoma cells. Oncogene. 2005;24(43):6533-6544. https://doi.org/10.1038/sj.onc.1208801

» https://doi.org/10.1038/sj.onc.1208801

Fleet JC, DeSmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012;441(1):61-76. https://doi.org/10.1042/BJ20110744

» https://doi.org/10.1042/BJ20110744

Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK, Gorham ED. Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet. 1989;2(8673): 1176-1178. https://doi.org/10.1016/s0140-6736(89)91789-3

» https://doi.org/10.1016/s0140-6736(89)91789-3

Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol . 1980;9(3):227-231. https://doi.org/10.1093/ije/9.3.227

» https://doi.org/10.1093/ije/9.3.227

Giovannucci E, Liu Y, Rimm EB, Hollis BW, Fuchs CS, Stampfer MJ, et al. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst. 2006;98(7):451-459. https://doi.org/10.1093/jnci/djj101

» https://doi.org/10.1093/jnci/djj101

Gocek E, Studzinski GP. The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy. J Clin Med. 2015;4(4):504-534. https://doi.org/10.3390/jcm4040504

» https://doi.org/10.3390/jcm4040504

Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, Lipkin M, et al. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007; 32(3): 210-216. https://doi.org/10.1016/j.amepre.2006.11.004

» https://doi.org/10.1016/j.amepre.2006.11.004

Grant WB. A Review of the Evidence Supporting the Vitamin D-Cancer Prevention Hypothesis in 2017. Anticancer Res. 2018;38(2):1121-1136. https://doi.org/10.21873/anticanres.12331

» https://doi.org/10.21873/anticanres.12331

Grant WB, Garland CF. The association of solar ultraviolet B (UVB) with reducing risk of cancer: multifactorial ecologic analysis of geographic variation in age-adjusted cancer mortality rates. Anticancer Res . 2006;26(4A):2687-2699. https://www.ncbi.nlm.nih.gov/pubmed/16886679

» https://www.ncbi.nlm.nih.gov/pubmed/16886679

Hafkamp FMJ, Taanman-Kueter EWM, van Capel TMM, Kormelink TG, de Jong EC. Vitamin D3 Priming of Dendritic Cells Shifts Human Neutrophil-Dependent Th17 Cell Development to Regulatory T Cells. Front Immunol. 2022;13:872665. https://doi.org/10.3389/fimmu.2022.872665

» https://doi.org/10.3389/fimmu.2022.872665

Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013; 92(2): 77-98. https://doi.org/10.1007/s00223-012-9619-0

» https://doi.org/10.1007/s00223-012-9619-0

Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst . 1999;91(14):1194-1210. https://doi.org/10.1093/jnci/91.14.1194

» https://doi.org/10.1093/jnci/91.14.1194

Heikkinen S, Vaisanen S, Pehkonen P, Seuter S, Benes V, Carlberg C. Nuclear hormone 1alpha,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res. 2011;39(21):9181-9193. https://doi.org/10.1093/nar/gkr654

» https://doi.org/10.1093/nar/gkr654

Helzlsouer KJ, Gallicchio L. Shedding light on serum vitamin D concentrations and the risk of rarer cancers. Anticancer Agents Med Chem. 2013;13(1):65-69. https://www.ncbi.nlm.nih.gov/pubmed/23094922

» https://www.ncbi.nlm.nih.gov/pubmed/23094922

Horvath HC, Khabir Z, Nittke T, Gruber S, Speer G, Manhardt T, et al. CYP24A1 splice variants--implications for the antitumorigenic actions of 1,25-(OH)2D3 in colorectal cancer. J Steroid Biochem Mol Biol. 2010;121(1-2):76-79. https://doi.org/10.1016/j.jsbmb.2010.03.080

» https://doi.org/10.1016/j.jsbmb.2010.03.080

Huang CY, Weng YT, Li PC, Hsieh NT, Li CI, Liu HS, et al. Calcitriol Suppresses Warburg Effect and Cell Growth in Human Colorectal Cancer Cells. Life (Basel). 2021;11(9). https://doi.org/10.3390/life11090963

» https://doi.org/10.3390/life11090963

Jamshidi F, Zhang J, Harrison JS, Wang X, Studzinski GP. Induction of differentiation of human leukemia cells by combinations of COX inhibitors and 1,25-dihydroxyvitamin D3 involves Raf1 but not Erk 1/2 signaling. Cell Cycle. 2008;7(7):917-924. https://doi.org/10.4161/cc.7.7.5620

» https://doi.org/10.4161/cc.7.7.5620

Jiang F, Bao J, Li P, Nicosia SV, Bai W. Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 through the down-regulation of telomerase. J Biol Chem . 2004;279(51):53213-53221. https://doi.org/10.1074/jbc.M410395200

» https://doi.org/10.1074/jbc.M410395200

Kallay E, Bareis P, Bajna E, Kriwanek S, Bonner E, Toyokuni S, et al. Vitamin D receptor activity and prevention of colonic hyperproliferation and oxidative stress. Food Chem Toxicol. 2002;40(8):1191-1196. https://doi.org/10.1016/s0278-6915(02)00030-3

» https://doi.org/10.1016/s0278-6915(02)00030-3

Kim MS, Kondo T, Takada I, Youn MY, Yamamoto Y, Takahashi S, et al. DNA demethylation in hormone-induced transcriptional derepression. Nature. 2009;461(7266):1007-1012. https://doi.org/10.1038/nature08456

» https://doi.org/10.1038/nature08456

Kovalenko PL, Zhang Z, Cui M, Clinton SK, Fleet JC. 1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics. 2010;11:26. https://doi.org/10.1186/1471-2164-11-26

» https://doi.org/10.1186/1471-2164-11-26

La Vecchia C, Ferraroni M, D’Avanzo B, Decarli A, Franceschi S. Selected micronutrient intake and the risk of gastric cancer. Cancer Epidemiol Biomarkers Prev. 1994;3(5):393-398. https://www.ncbi.nlm.nih.gov/pubmed/7920206

» https://www.ncbi.nlm.nih.gov/pubmed/7920206

Li H, Stampfer MJ, Hollis JB, Mucci LA, Gaziano JM, Hunter D, et al. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med. 2007;4(3):e103. https://doi.org/10.1371/journal.pmed.0040103

» https://doi.org/10.1371/journal.pmed.0040103

Li J, Luco AL, Ochietti B, Fadhil I, Camirand A, Reinhardt TA, et al. Tumoral Vitamin D Synthesis by CYP27B1 1-alpha-Hydroxylase Delays Mammary Tumor Progression in the PyMT-MMTV Mouse Model and Its Action Involves NF-kappaB Modulation. Endocrinology . 2016;157(6):2204-2216. https://doi.org/10.1210/en.2015-1824

» https://doi.org/10.1210/en.2015-1824

Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE. 1 alpha,25-dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo. Circ Res. 2000;87(3):214-220. https://doi.org/10.1161/01.res.87.3.214

» https://doi.org/10.1161/01.res.87.3.214

Matthews D, LaPorta E, Zinser GM, Narvaez CJ, Welsh J. Genomic vitamin D signaling in breast cancer: Insights from animal models and human cells. J Steroid Biochem Mol Biol . 2010;121(1-2):362-367. https://doi.org/10.1016/j.jsbmb.2010.03.061

» https://doi.org/10.1016/j.jsbmb.2010.03.061

McCullough ML, Bostick RM, Mayo TL. Vitamin D gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer. Annu Rev Nutr. 2009;29:111-132. https://doi.org/10.1146/annurev-nutr-080508-141248

» https://doi.org/10.1146/annurev-nutr-080508-141248

Mondul AM, Weinstein SJ, Layne TM, Albanes D. Vitamin D and Cancer Risk and Mortality: State of the Science, Gaps, and Challenges. Epidemiol Rev. 2017;39(1):28-48. https://doi.org/10.1093/epirev/mxx005

» https://doi.org/10.1093/epirev/mxx005

Mosekilde L. Vitamin D requirement and setting recommendation levels: long-term perspectives. Nutr Rev. 2008;66(10 Suppl 2):S170-177. https://doi.org/10.1111/j.1753-4887.2008.00103.x

» https://doi.org/10.1111/j.1753-4887.2008.00103.x

Nesby-O’Dell S, Scanlon KS, Cogswell ME, Gillespie C, Hollis BW, Looker AC, et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988-1994. Am J Clin Nutr. 2002;76(1):187-192. https://doi.org/10.1093/ajcn/76.1.187

» https://doi.org/10.1093/ajcn/76.1.187

Okrit F, Chantranuwatana P, Werawatganon D, Chayanupatkul M, Sanguanrungsirikul S. Changes of vitamin D receptors (VDR) and MAPK activation in cytoplasmic and nuclear fractions following exposure to cigarette smoke with or without filter in rats. Heliyon. 2021;7(1):e05927. https://doi.org/10.1016/j.heliyon.2021.e05927

» https://doi.org/10.1016/j.heliyon.2021.e05927

Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol. 2001;154(2):369-387. https://doi.org/10.1083/jcb.200102028

» https://doi.org/10.1083/jcb.200102028

Palmer HG, Larriba MJ, Garcia JM, Ordonez-Moran P, Pena C, Peiro S, et al. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med. 2004;10(9):917-919. https://doi.org/10.1038/nm1095

» https://doi.org/10.1038/nm1095

Pelucchi C, Tramacere I, Bertuccio P, Tavani A, Negri E, La Vecchia C. Dietary intake of selected micronutrients and gastric cancer risk: an Italian case-control study. Ann Oncol. 2009;20(1):160-165. https://doi.org/10.1093/annonc/mdn536

» https://doi.org/10.1093/annonc/mdn536

Piemonti L, Monti P, Sironi M, Fraticelli P, Leone BE, Dal Cin E, et al. Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol . 2000;164(9):4443-4451. https://doi.org/10.4049/jimmunol.164.9.4443

» https://doi.org/10.4049/jimmunol.164.9.4443

Pike JW, Meyer MB, Bishop KA. Regulation of target gene expression by the vitamin D receptor - an update on mechanisms. Rev Endocr Metab Disord. 2012;13(1):45-55. https://doi.org/10.1007/s11154-011-9198-9

» https://doi.org/10.1007/s11154-011-9198-9

Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(12):664-673. https://doi.org/10.1016/j.tibs.2004.10.005

» https://doi.org/10.1016/j.tibs.2004.10.005

Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A, et al. A ChIP-seq defined genome- wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010;20(10):1352-1360. https://doi.org/10.1101/gr.107920.110

» https://doi.org/10.1101/gr.107920.110

Ren C, Qiu MZ, Wang DS, Luo HY, Zhang DS, Wang ZQ, et al. Prognostic effects of 25-hydroxyvitamin D levels in gastric cancer. J Transl Med. 2012;10:16. https://doi.org/10.1186/1479-5876-10-16

» https://doi.org/10.1186/1479-5876-10-16

Schullehner J, Hansen B, Thygesen M, Pedersen CB, Sigsgaard T. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study. Int J Cancer. 2018; 143(1): 73-79. https://doi.org/10.1002/ijc.31306

» https://doi.org/10.1002/ijc.31306

Skaaby T, Husemoen LL, Pisinger C, Jorgensen T, Thuesen BH, Fenger M, et al. Vitamin D status and changes in cardiovascular risk factors: a prospective study of a general population. Cardiology. 2012;123(1):62-70. https://doi.org/10.1159/000341277

» https://doi.org/10.1159/000341277

Skaaby T, Husemoen LL, Pisinger C, Jorgensen T, Thuesen BH, Fenger M, et al. Vitamin D status and incident cardiovascular disease and all-cause mortality: a general population study. Endocrine. 2013;43(3):618-625. https://doi.org/10.1007/s12020-012-9805-x

» https://doi.org/10.1007/s12020-012-9805-x

Skaaby T, Husemoen LL, Thuesen BH, Pisinger C, Jorgensen T, Roswall N, et al. Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol Biomarkers Prev . 2014;23(7):1220-1229. https://doi.org/10.1158/1055-9965.EPI-14-0007

» https://doi.org/10.1158/1055-9965.EPI-14-0007

Skinner HG, Michaud DS, Giovannucci E, Willett WC, Colditz GA, Fuchs CS. Vitamin D intake and the risk for pancreatic cancer in two cohort studies. Cancer Epidemiol Biomarkers Prev . 2006;15(9):1688-1695. https://doi.org/10.1158/1055-9965.EPI-06-0206

» https://doi.org/10.1158/1055-9965.EPI-06-0206

Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, et al. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology . 2003;144(9):3885-3894. https://doi.org/10.1210/en.2003-0314

» https://doi.org/10.1210/en.2003-0314

Stolzenberg-Solomon RZ, Jacobs EJ, Arslan AA, Qi D, Patel AV, Helzlsouer KJ, et al. Circulating 25-hydroxyvitamin D and risk of pancreatic cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am J Epidemiol . 2010;172(1):81-93. https://doi.org/10.1093/aje/kwq120

» https://doi.org/10.1093/aje/kwq120

Sunn KL, Cock TA, Crofts LA, Eisman JA, Gardiner EM. Novel N-terminal variant of human VDR. Mol Endocrinol. 2001;15(9):1599-1609. https://doi.org/10.1210/mend.15.9.0693

» https://doi.org/10.1210/mend.15.9.0693

Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science. 1997;277(5333):1827-1830. https://doi.org/10.1126/science.277.5333.1827

» https://doi.org/10.1126/science.277.5333.1827

Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017; 355(6331): 1330-1334. https://doi.org/10.1126/science. aaf9011

» https://doi.org/10.1126/science. aaf9011

Usategui-Martin R, De Luis-Roman DA, Fernandez-Gomez JM, Ruiz-Mambrilla M, Perez-Castrillon JL. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(2). https://doi.org/10.3390/nu14020360

» https://doi.org/10.3390/nu14020360

van Etten E, Verlinden L, Giulietti A, Ramos-Lopez E, Branisteanu DD, Ferreira GB, et al. The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. Eur J Immunol . 2007;37(2):395-405. https://doi.org/10.1002/eji.200636043

» https://doi.org/10.1002/eji.200636043

Vukic M, Neme A, Seuter S, Saksa N, de Mello VD, Nurmi T, et al. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells. PLoS One. 2015;10(4):e0124339. https://doi.org/10.1371/journal.pone.0124339

» https://doi.org/10.1371/journal.pone.0124339

Vyas N, Companioni RC, Tiba M, Alkhawam H, Catalano C, Sogomonian R, et al. Association between serum vitamin D levels and gastric cancer: A retrospective chart analysis. World J Gastrointest Oncol. 2016;8(9):688-694. https://doi.org/10.4251/wjgo.v8.i9.688

» https://doi.org/10.4251/wjgo.v8.i9.688

Wang Q, Xi B, Reilly KH, Liu M, Fu M. Quantitative assessment of the associations between four polymorphisms (FokI, ApaI, BsmI, TaqI) of vitamin D receptor gene and risk of diabetes mellitus. Mol Biol Rep. 2012;39(10):9405-9414. https://doi.org/10.1007/s11033-012-1805-7

» https://doi.org/10.1007/s11033-012-1805-7

Welsh J. Cellular and molecular effects of vitamin D on carcinogenesis. Arch Biochem Biophys. 2012;523(1):107-114. https://doi.org/10.1016/j.abb.2011.10.019

» https://doi.org/10.1016/j.abb.2011.10.019

Wen Y, Da M, Zhang Y, Peng L, Yao J, Duan Y. Alterations in vitamin D signaling pathway in gastric cancer progression: a study of vitamin D receptor expression in human normal, premalignant, and malignant gastric tissue. Int J Clin Exp Pathol. 2015;8(10):13176-13184. https://www.ncbi.nlm.nih.gov/pubmed/26722516

» https://www.ncbi.nlm.nih.gov/pubmed/26722516

Xiong Y, Zhang Y, Xin N, Yuan Y, Zhang Q, Gong P, et al. 1alpha,25-Dihydroxyvitamin D(3) promotes osteogenesis by promoting Wnt signaling pathway. J Steroid Biochem Mol Biol . 2017;174:153-160. https://doi.org/10.1016/j.jsbmb.2017.08.014

» https://doi.org/10.1016/j.jsbmb.2017.08.014

Yang J, Chen Q, Tian S, Song S, Liu F, Wang Q, et al. The role of 1,25-dyhydroxyvitamin D3 in mouse liver ischemia reperfusion injury: regulation of autophagy through activation of MEK/ERK signaling and PTEN/PI3K/Akt/ mTORC1 signaling. Am J Transl Res. 2015;7(12):2630-2645. https://www.ncbi.nlm.nih.gov/pubmed/26885262

» https://www.ncbi.nlm.nih.gov/pubmed/26885262

Yang J, Ikezoe T, Nishioka C, Ni L, Koeffler HP, & Yokoyama A. Inhibition of mTORC1 by RAD001 (everolimus) potentiates the effects of 1,25-dihydroxyvitamin D(3) to induce growth arrest and differentiation of AML cells in vitro and in vivo. Exp Hematol. 2010;38(8): 666-676. https://doi.org/10.1016/j.exphem.2010.03.020

» https://doi.org/10.1016/j.exphem.2010.03.020

Yang L, Zhao H, Liu K, Wang Y, Liu Q, Sun T, et al. Smoking behavior and circulating vitamin D levels in adults: A meta- analysis. Food Sci Nutr. 2021;9(10):5820-5832. https://doi.org/10.1002/fsn3.2488

» https://doi.org/10.1002/fsn3.2488

Ye B, Weng Y, Lin S, Lin J, Huang Z, Huang W, et al. 1,25(OH)(2)D(3) Strengthens the Vasculogenesis of Multipotent Mesenchymal Stromal Cells from Rat Bone Marrow by Regulating the PI3K/AKT Pathway. Drug Des Devel Ther. 2020;14:1157-1167. https://doi.org/10.2147/DDDT.S222244

» https://doi.org/10.2147/DDDT.S222244

Yin L, Grandi N, Raum E, Haug U, Arndt V, Brenner H. Meta-analysis: serum vitamin D and breast cancer risk. Eur J Cancer. 2010;46(12):2196-2205. https://doi.org/10.1016/j.ejca.2010.03.037

» https://doi.org/10.1016/j.ejca.2010.03.037

Yoshida S, Ikari K, Furuya T, Toyama Y, Taniguchi A, Yamanaka H, et al. A GC polymorphism associated with serum 25-hydroxyvitamin D level is a risk factor for hip fracture in Japanese patients with rheumatoid arthritis: 10- year follow-up of the Institute of Rheumatology, Rheumatoid Arthritis cohort study. Arthritis Res Ther. 2014;16(2):R75. https://doi.org/10.1186/ar4516

» https://doi.org/10.1186/ar4516

Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet. 1997;16(4):391-396. https://doi.org/10.1038/ng0897-391

» https://doi.org/10.1038/ng0897-391

Zablotska LB, Gong Z, Wang F, Holly EA, Bracci PM. Vitamin D, calcium, and retinol intake, and pancreatic cancer in a population-based case-control study in the San Francisco Bay area. Cancer Causes Control. 2011; 22(1): 91-100. https://doi.org/10.1007/s10552-010-9678-3

» https://doi.org/10.1007/s10552-010-9678-3

Zeidan NMS, Lateef H, Selim DM, Razek SA, Abd-Elrehim GAB, Nashat M, et al. Vitamin D deficiency and vitamin D receptor FokI polymorphism as risk factors for COVID-19. Pediatr Res. 2022;1-8. https://doi.org/10.1038/s41390-022- 02275-6

» https://doi.org/10.1038/s41390-022- 02275-6

Zhang X, Zanello LP. Vitamin D receptor-dependent 1 alpha,25(OH)2 vitamin D3-induced anti-apoptotic PI3K/AKT signaling in osteoblasts. J Bone Miner Res . 2008;23(8):1238-1248. https://doi.org/10.1359/jbmr.080326

» https://doi.org/10.1359/jbmr.080326

Downloads

Published

2023-11-03 — Updated on 2023-11-03

Issue

Section

Review

How to Cite

Unraveling the complex link between vitamin D levels and cancer. (2023). Brazilian Journal of Pharmaceutical Sciences, 59. https://doi.org/10.1590/