Formation of hydrophilic fibers containing polyhexamethylene biguanide and hyaluronic acid by electrospinning to wound healing

Authors

  • Lonetá Lauro Lima 3D Technologies Research Group (NT3D), Renato Archer Information Technology Center (CTI), Campinas, SP, Brazil https://orcid.org/0000-0002-2214-7148
  • Roberta Balansin Rigon Center of Cosmetic and Dermatology Specialties (CECD), Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
  • Marcos Akira d’Ávila School of Mechanical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
  • Pedro Gonçalves de Oliveira Instituto de Ortopedia e Traumatologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Sports Traumatology Group, Department of Orthopaedics and Traumatology, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
  • Rodrigo Alvarenga Rezende 3D Technologies Research Group (NT3D), Renato Archer Information Technology Center (CTI), Campinas, SP, Brazil; Postgraduate Program in Biotechnology, Uniara, Araraquara, SP, Brazil
  • Gislaine Ricci Leonardi Center of Cosmetic and Dermatology Specialties (CECD), Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil

DOI:

https://doi.org/10.1590/

Keywords:

Electrospinning, Biomaterial, Chemical stability, PHMB, Hyaluronic acid, Wound dressing

Abstract

For good wound management, simultaneous phases during the wound healing process must be considered, including protection against infection, modulation of the inflammatory process, and proliferation and acceleration of cell migration. The aim of this study was to obtain Poly (Vinyl Pyrrolidone) (PVP) hydrophilic fibers containing polyhexamethylene biguanide (PHMB) and hyaluronic acid (HA) using the electrospinning technique to improve chronic wound treatment. Polymers mean hydrodynamic radius and polydispersity index (PdI) were measured by dynamic light scattering (DLS), whereas fiber morphology and diameter were evaluated by scanning electron microscopy (SEM). Also, Fourier transform infrared spectroscopy (FTIR) and contact angle measurements were performed. Fibers were obtained and presented homogenous morphology with a smooth surface. The FTIR study demonstrated an interaction between C=O groups of PVP and HA/PHMB in the PVP + HA/PHMB fibrous composites. Contact angle analysis has shown a hydrophilic characteristic of fibers produced. These findings demonstrate the great potential of electrospinning for developing drug-delivery systems with antimicrobial properties for wound healing treatment.

Downloads

Download data is not yet available.

References

Ali MS, Ghosh G, Kabir-ud-Din. Amphiphilic drug persuaded collapse of polyvinylpyrrolidone and poly(ethylene glycol) chains: A dynamic light scattering study. Colloids Surfaces B Biointerfaces. 2010; 75(2): 590–4. https://doi.org/10.1016/j.colsurfb.2009.10.002 .

» https://doi.org/10.1016/j.colsurfb.2009.10.002.

Allen MJ, Morby AP, White GF. Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochem Biophys Res Commun. 2004; 318: 397– 404. https://doi.org/10.1016/j.bbrc.2004.04.043 .

» https://doi.org/10.1016/j.bbrc.2004.04.043.

Baron JM, Glatz M, Proksch E. Optimal Support of Wound Healing: New Insights. Dermatology. 2020: 1–8. https://doi.org/10.1159/000505291 .

» https://doi.org/10.1159/000505291.

Berce C, Muresan MS, Soritau O, Petrushev B, Tefas L, Rigo I, et al. Cutaneous wound healing using polymeric surgical dressings based on chitosan, sodium hyaluronate and resveratrol. A preclinical experimental study. Colloids Surfaces B Biointerfaces. 2018; 163: 155–66. https://doi.org/10.1016/j.colsurfb.2017.12.041 .

» https://doi.org/10.1016/j.colsurfb.2017.12.041

Borda LJ, Jaller JA, Kallis PJ, MacQuhae FE, Herskovitz I, Fox JD, et al. Patients’ prediction of their wound healing time. Wound Repair Regen. 2018; 26: 297–9. https://doi.org/10.1111/wrr.12663.

» https://doi.org/10.1111/wrr.12663.

Bujak T, Wasilewski T, Nizioł-Łukaszewska Z. Role of macromolecules in the safety of use of body wash cosmetics. Colloids Surfaces B Biointerfaces. 2015; 135: 497–503. https://doi.org/10.1016/j.colsurfb.2015.07.051.

» https://doi.org/10.1016/j.colsurfb.2015.07.051

Butcher M. PHMB: An effective antimicrobial in wound bioburden management. Br J Nurs. 2012; 21: 16–21.

Colmenares Roldán GJ, Quintero Martínez Y, Agudelo Gómez LM, Rodríguez Vinasco LF, Hoyos Palacio LM. Influence of the molecular weight of polymer, solvents and operational condition in the electrospinning of polycaprolactone. Rev Fac Ing Univ Antioquia. 2017: 35–45. https://doi.org/10.17533/udea.redin.n84a05 .

» https://doi.org/10.17533/udea.redin.n84a05.

Deniz AE, Vural HA, Ortaç B, Uyar T. Gold nanoparticle/ polymer nanofibrous composites by laser ablation and electrospinning. Mater Lett. 2011; 65: 2941–3. https://doi.org/10.1016/j.matlet.2011.06.045.

» https://doi.org/10.1016/j.matlet.2011.06.045.

Dilamian M, Montazer M, Masoumi J. Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydr Polym. 2013; 94: 364–71. https://doi.org/10.1016/j.carbpol.2013.01.059 .

» https://doi.org/10.1016/j.carbpol.2013.01.059

Ellis S, Lin EJ, Tartar D. Immunology of Wound Healing. Curr Dermatol Rep. 2018; 7: 350–8. https://doi.org/10.1007/s13671-018-0234-9 .

» https://doi.org/10.1007/s13671-018-0234-9.

Escandon J, Vivas AC, Tang J, Rowland KJ, Kirsner RS. High mortality in patients with chronic wounds. Wound Repair Regen. 2011; 19: 526–8. https://doi.org/10.1111/j.1524-475X.2011.00699.x .

» https://doi.org/10.1111/j.1524-475X.2011.00699.x

Fischer M, Harosh E. Purification of proteins with cationic surfactant. WO 2008/051178 A2, 2008.

Gao Y, Sun Y, Yang H, Qiu P, Cong Z, Zou Y, et al. A low molecular weight hyaluronic acid derivative accelerates excisional wound healing by modulating pro-inflammation, promoting epithelialization and neovascularization, and remodeling collagen. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20153722 .

» https://doi.org/10.3390/ijms20153722.

Gompelman M, van Asten SAV, Peters EJG. Update on the Role of Infection and Biofilms in Wound Healing. Plast Reconstr Surg. 2016; 138: 61S-70S. https://doi.org/10.1097/PRS.0000000000002679 .

» https://doi.org/10.1097/PRS.0000000000002679.

Gonçalves N, Frazolin RA, Oliveira PG, Castilho JC. Comparison of the effects of hyaluronic acid 0.2% and essential fatty acids in burn victim due to fertilizer exposure: case report. Rev Bras Queimaduras. 2016; 15: 175–8.

Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, William Costerton J, et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol. 2012; 65: 127–45. https://doi.org/10.1111/j.1574-695X.2012.00968.x .

» https://doi.org/10.1111/j.1574-695X.2012.00968.x.

Ialenti A, Di Rosa M. Hyaluronic acid modulates acute and chronic inflammation. Agents Actions. 1994; 43: 44–7. https://doi.org/10.1007/BF02005763 .

» https://doi.org/10.1007/BF02005763.

Ikeda T, Ledwith A, Bamford CH, Hann RA. Interaction of a polymeric biguanide biocide with phospholipid membranes. Biochim Biophys Acta - Biomembr. 1984; 769: 57–66. https://doi.org/10.1016/0005-2736(84)90009-9 .

» https://doi.org/10.1016/0005-2736(84)90009-9.

Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA- based hydrogel dressings. J Adv Res. 2017; 8: 217–33. https://doi.org/10.1016/j.jare.2017.01.005

» https://doi.org/10.1016/j.jare.2017.01.005.

Kingley A, Tadej M, Colbourn A, Kerr A, Aslan CB. Suprasorb?? X +PHMB: Antimicrobial and HydroBalance action in a new wound dressing. Wounds UK. 2009; 5: 72–7.

Lawrence JR, Swerhone GDW, Kuhlicke U, Neu TR. In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol. 2007; 53: 450–8. https://doi.org/10.1139/W06-146 .

» https://doi.org/10.1139/W06-146.

Leal CV, dos Santos Almeida R, Dávila JL, Domingues JA, Hausen MA, Duek EAR, et al. Characterization and in vitro evaluation of electrospun aligned-fiber membranes of poly(L-co-D,L-lactic acid). J Appl Polym Sci. 2019; 136: 1–9. https://doi.org/10.1002/app.47657 .

» https://doi.org/10.1002/app.47657.

Lebel O, Maris T, Wuest JD. Hydrogen-bonded networks in crystals built from bis(biguanides) and their salts. Can J Chem. 2006; 84: 1426–33. https://doi.org/10.1139/V06-115 .

» https://doi.org/10.1139/V06-115.

Lima LL, Bierhalz ACK, Moraes ÂM. Influence of the chemical composition and structure design of electrospun matrices on the release kinetics of Aloe vera extract rich in aloin. Polym Degrad Stab. 2020; 179: 109233. https://doi.org/10.1016/j.polymdegradstab.2020.109233 .

» https://doi.org/10.1016/j.polymdegradstab.2020.109233.

Lima LL, Taketa TB, Beppu MM, de Oliveira Sousa IM, Foglio MA, Moraes ÂM. Coated electrospun bioactive wound dressings: Mechanical properties and ability to control lesion microenvironment. Mater Sci Eng C. 2019.

Mendoza RA, Hsieh J-C, Galiano RD. The Impact of Biofilm Formation on Wound Healing. Wound Heal. - Curr. Perspect., IntechOpen. 2019. https://doi.org/10.5772/intechopen.85020 .

» https://doi.org/10.5772/intechopen.85020.

Oh JS, Lee EJ. Engineered dressing of hybrid chitosan-silica for effective delivery of keratin growth factor and acceleration of wound healing. Mater Sci Eng C. 2019; 103: 109815. https://doi.org/10.1016/j.msec.2019.109815 .

» https://doi.org/10.1016/j.msec.2019.109815.

Oliveira MH, de Oliveira Araújo HP, De-Sousa MSC, Fernandes NMS, Basílio EEF, Menezes AB de, et al. Use of hyaluronic acid and biocellulose film in topical treatment of burn. Rev Bras Queimaduras. 2017; 16: 135–8.

Ousey K, McIntosh C. Topical antimicrobial agents for the treatment of chronic wounds. Br J Community Nurs. 2009; 14: S6–15. https://doi.org/10.12968/bjcn.2009.14.Sup4.43909 .

» https://doi.org/10.12968/bjcn.2009.14.

Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol. 2012; 4: 253. https://doi.org/10.4161/derm.21923 .

» https://doi.org/10.4161/derm.21923.

Pezzin SH, Olalla ÁS, Torres EG, Santos AL dos, Duarte MAT, Silva L da, et al. Preparação de membranas de PHB por eletrofiação e caracterização para aplicações em engenharia tecidual. Matéria (Rio Janeiro). 2018; 23. https://doi.org/10.1590/s1517-707620180004.0552 .

» https://doi.org/10.1590/s1517-707620180004.0552.

Quan J, Yu Y, Branford-White C, Williams GR, Yu DG, Nie W, et al. Preparation of ultrafine fast-dissolving feruloyl- oleyl-glycerol-loaded polyvinylpyrrolidone fiber mats via electrospinning. Colloids Surfaces B Biointerfaces. 2011; 88: 304–9. https://doi.org/10.1016/j.colsurfb.2011.07.006.

» https://doi.org/10.1016/j.colsurfb.2011.07.006

Rhoads DD, Wolcott RD, Percival SL. Biofilms in wounds: management strategies. J Wound Care. 2008; 17: 502–8. https://doi.org/10.12968/jowc.2008.17.11.31479 .

» https://doi.org/10.12968/jowc.2008.17.11.31479.

Salas C. Solution electrospinning of nanofibers. Electrospun Nanofibers, Elsevier; 2017, p. 73–108. https://doi.org/10.1016/B978-0-08-100907-9.00004-0 .

» https://doi.org/10.1016/B978-0-08-100907-9.00004-0

Salles THC, Volpe-Zanutto F, De Oliveira Sousa IM, MacHado D, Zanatta AC, Vilegas W, et al. Electrospun PCL-based nanofibers Arrabidaea chica Verlot - Pterodon pubescens Benth loaded: Synergic effect in fibroblast formation. Biomed Mater. 2020; 15: 0–11. https://doi.org/10.1088/1748-605X/ab9bb1 .

» https://doi.org/10.1088/1748-605X/ab9bb1.

Santos MC. Efetividade do Polihexametileno-Biguanida (PHMB) na redução do biofilme em feridas crônicas: Revisão Sistemática. Universidade Federal do Paraná, 2017.

dos Santos VR, Vera SD, de Cena GL, Silva A de P, Lemes AP, da Conceição K, et al. Electrospun PHBV nanofiber containing Tea Tree Oil: physicochemical and antimicrobial activity. Polimeros. 2023; 33: 1–11. https://doi.org/10.1590/0104-1428.20220088 .

» https://doi.org/10.1590/0104-1428.20220088.

Sartoretto SC, Calasans-Maia J de A, da Costa YO, Louro RS, Granjeiro JÉ, Calasans-Maia MD. Accelerated healing period with hydrophilic implant placed in sheep Tibia. Braz Dent J. 2017; 28: 559–65. https://doi.org/10.1590/0103-6440201601559 .

» https://doi.org/10.1590/0103-6440201601559

Serrano-Sevilla I, Artiga Á, Mitchell SG, De Matteis L, de la Fuente JM. Natural Polysaccharides for siRNA Delivery: Nanocarriers Based on Chitosan, Hyaluronic Acid, and Their Derivatives. Molecules. 2019; 24: 2570. https://doi.org/10.3390/molecules24142570 .

» https://doi.org/10.3390/molecules24142570.

Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M. Hyaluronic acid: The influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers (Basel). 2020; 12(8): 1800. https://doi.org/10.3390/polym12081800 .

» https://doi.org/10.3390/polym12081800.

Sowlati-Hashjin S, Carbone P, Karttunen M. Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study. J Phys Chem B. 2020; 124(22): 4487-4497.

Whitney JAD. Overview: Acute and chronic wounds. Nurs Clin North Am. 2005; 40: 191–205. https://doi.org/10.1016/j.cnur.2004.09.002 .

» https://doi.org/10.1016/j.cnur.2004.09.002.

Downloads

Published

2024-11-05

Issue

Section

Article

How to Cite

Formation of hydrophilic fibers containing polyhexamethylene biguanide and hyaluronic acid by electrospinning to wound healing. (2024). Brazilian Journal of Pharmaceutical Sciences, 60. https://doi.org/10.1590/