Comparative study of mucoadhesive vaginal tablets of Schinopsis brasiliensis Engler extract formulated with different polymers with antifungal activity
DOI:
https://doi.org/10.1590/Keywords:
Vaginal fungal infections, Mucoadhesion, Carboxymethylcellulose, Hydroxypropylmethylcellulose, PluronicAbstract
Candida albicans is the main fungus responsible for acute and recurrent vaginal infections. Low adherence to treatment is due to dosing frequency and available topical medications. Thus, we developed mucoadhesive tablets based on Schinopsis brasiliensis Engler extract composed of Carboxymethylcellulose (F1), Hydroxypropylmethylcellulose (F2), or Pluronic (F3), against C. albicans . The extract metabolites determination showed presence of polyphenols (15 μg.mg-1), flavonoids (5.51 μg.mg-1), and tannins (4.80 μg.mg-1). The in vitro antifungal activity was performed by broth microdilution method. Quality control tests were performed according international pharmacopeias. Regarding the mucoadhesion test, in terms of the force expressed between the tablet:mucin disc, the average values were approximately 0.1267 N (F1), 0.0411 N (F2) and 0.814 N (F3), while in the tablet:vaginal mucosa, the average values were approximately 0.0294 N (F1), 0.0166 N (F2) and 0.0365 N (F3). The dry extract showed a minimum inhibitory concentration of 62.5 μg.mL-1. In evaluating the in vitro release of tablets, polymers derived from cellulose released 100% in less than 4 hours, while Pluronic released around 56.3% in 72 hours. It is concluded that F1 has greater mucoadhesion while F3 has a modified release rate, providing promising results for future application of the formulation in the clinical assay.
Downloads
References
AlSheikh HM Al, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, et al. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics. 2020;9(8):480. Available from: https://doi.org/10.3390/antibiotics9080480
» https://doi.org/10.3390/antibiotics9080480
Alves JMV, Prado LD, Rocha HVA. Dissolution Method Evaluation for Carvedilol Tablets. Dissolut Technol. 2020;27(1):30–5. Available from: https://dx.doi.org/10.14227/DT270120P30
» https://doi.org/10.14227/DT270120P30
Asati S, Jain S, Choubey, A. Bioadhesive or mucoadhesive drug delivery system: A potential alternative to conventional therapy. J Drug Delivery Ther. 2019;9(4-A):858–867. https://doi.org/10.22270/jddt.v9i4-A.3708
» https://doi.org/10.22270/jddt.v9i4-A.3708
Barreto Linhares LPM, Pereira BVN, Dantas MKG, Bezerra WM da S, Viana-Marques D de A, de Lima LRA, et al. Schinopsis brasiliensis Engler-Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals. 2022;15(8):1028. Available from: https://doi.org/10.3390/ph15081028
» https://doi.org/10.3390/ph15081028
Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J Sci Food Agric. 1978;29(9):788–94. Available from: https://doi.org/10.1002/jsfa.2740290908
» https://doi.org/10.1002/jsfa.2740290908
Calori IR, Braga G, de Jesus P da CC, Bi H, Tedesco AC. Polymer scaffolds as drug delivery systems. Eur Polym J. 2020;129:109621. Available from: https://doi.org/10.1016/j.eurpolymj.2020.109621
» https://doi.org/10.1016/j.eurpolymj.2020.109621
Chaiya P, Patomchaiviwat V, Phaechamud T. Designing and characterization of Yahom buccal mucoadhesive tablets for oral ulcer treatment. Mater Today Proc. 2023; Available from: https://doi.org/10.1016/j.matpr.2023.03.739
» https://doi.org/10.1016/j.matpr.2023.03.739
Chatterjee B, Amalina N, Sengupta P, Mandal UK. Mucoadhesive polymers and their mode of action: A recent update. J App Pharm Sci. 2017;7(05):195-203. Available from: https://dx.doi.org/10.7324/JAPS.2017.70533
» https://doi.org/10.7324/JAPS.2017.70533
Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020;19(1):203. Available from: https://doi.org/10.1186/s12934-020-01464-4
» https://doi.org/10.1186/s12934-020-01464-4
Dedeloudi A, Siamidi A, Pavlou P, Vlachou M. Recent advances in the excipients used in modified release vaginal formulations. Materials. 2022;15(1):327. Available from: https://doi.org/10.3390/ma15010327
» https://doi.org/10.3390/ma15010327
Edmans JG, Clitherow KH, Murdoch C, Hatton P V, Spain SG, Colley HE. Mucoadhesive electrospun fibre- based technologies for oral medicine. Pharmaceutics. 2020;12(6):504. Available from: https://doi.org/10.3390/pharmaceutics12060504
» https://doi.org/10.3390/pharmaceutics12060504
Farmacopeia Brasileira. 6 ed. Brasília, DF: Agência Nacional de Vigilância Sanitária, 2019, v.1. Available from: http://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira .
Fernandes FHA, Batista RS de A, de Medeiros FD, Santos FS, Medeiros ACD. Development of a rapid and simple HPLC- UV method for determination of gallic acid in Schinopsis brasiliensis. Rev Bras Farmacogn. 2015;25(3):208–11. Available from: https://doi.org/10.1016/j.bjp.2015.05.006
» https://doi.org/10.1016/j.bjp.2015.05.006
Fujimoto Y, Hirai N, Takatani-Nakase T, Takahashi K. Novel tablet formulation of amorphous indomethacin using wet granulation with a high-speed mixer granulator combined with porous calcium silicate. J Drug Deliv Sci Technol. 2016;33:51–7. Available from: https://doi.org/10.1016/j.jddst.2016.03.001
» https://doi.org/10.1016/j.jddst.2016.03.001
Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit Rev Microbiol. 2016;42(6):905–27. Available from: http://dx.doi.org/10.31091040841X.2015.1091805
» http://dx.doi.org/10.31091040841X.2015.1091805
Gunathilake TMSU, Ching YC, Chuah CH, Rahman NA, Nai-Shang L. pH-responsive poly (lactic acid)/sodium carboxymethyl cellulose film for enhanced delivery of curcumin in vitro. J Drug Delivery Sci Technol. 2020;58:101787. Available from: https://dx.doi.org/10.1016/j.jddst.2020.101787
» https://doi.org/10.1016/j.jddst.2020.101787
Harris-Tryon TA, Grice EA. Microbiota and maintenance of skin barrier function. Science. 2022;376(6596):940–5. Available from: https://dx.doi.org/10.1126/science.abo0693
» https://doi.org/10.1126/science.abo0693
Hirun N, Kraisit P. Drug-Polymers Composite Matrix Tablets: Effect of Hydroxypropyl Methylcellulose (HPMC) K-Series on Porosity, Compatibility, and Release Behavior of the Tablet Containing a BCS Class I Drug. Polymers. 2022;14(16):3406. Available from: https://doi.org/10.3390/polym14163406
» https://doi.org/10.3390/polym14163406
Hsu H, Sheth CC, Veses V. Herbal extracts with antifungal activity against Candida albicans: A systematic review. Mini Rev Med Chem. 2021;21(1):90–117. Available from: https://dx.doi.org/10.2174/1389557520666200628032116
» https://doi.org/10.2174/1389557520666200628032116
Kalogeropoulou F, Papailiou D, Protopapa C, Siamidi A, Tziveleka LA, Pippa N, et al. Design and Development of Low- and Medium-Viscosity Alginate Beads Loaded with Pluronic® F-127 Nanomicelles. Materials. 2023;16(13):4715. Available from: https://doi.org/10.3390/ma16134715
» https://doi.org/10.3390/ma16134715
Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int J Biol Macromol. 2020;164:963–75. Available from: https://doi.org/10.1016/j.ijbiomac.2020.07.160
» https://doi.org/10.1016/j.ijbiomac.2020.07.160
Kennedy B, Peura S, Hammar U, Vicenzi S, Hedman A, Almqvist C, et al. Oral Microbiota Development in Early Childhood. Sci Rep. 2019;9(1):19025. Available from: https://doi.org/10.1038/s41598-019-54702-0
» https://doi.org/10.1038/s41598-019-54702-0
de Lima-Saraiva SRG, Oliveira FG da S, Junior RG de O, Araújo C de S, de Oliveira AP, Pacheco AGM, et al. Chemical analysis and evaluation of antioxidant, antimicrobial, and photoprotective activities of Schinopsis brasiliensis Engl. (Anacardiaceae). Sci World J. 2017;2017:1713921. Available from: https://doi.org/10.1155/2017/1713921
» https://doi.org/10.1155/2017/1713921
Leturia M, Benali M, Lagarde S, Ronga I, Saleh K. Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods. Powder Technol. 2014;253:406–423. Available from: https://doi.org/10.1016/j.powtec.2013.11.045
» https://doi.org/10.1016/j.powtec.2013.11.045
de Oliveira MS, Oshiro-Junior JA, Sato MR, Conceição MM, Medeiros ACD. Polymeric nanoparticle associated with ceftriaxone and extract of Schinopsis brasiliensis engler against multiresistant enterobacteria. Pharmaceutics. 2020;12(8):695. Available from: https://doi.org/10.3390/pharmaceutics12080695
» https://doi.org/10.3390/pharmaceutics12080695
Oshiro Junior JA, Carvalho FC, Soares CP, Chorilli M, Chiavacci LA. Development of Cutaneous Bioadhesive Ureasil-Polyether Hybrid Films. Int J Polym Sci. 2015;2015:1– 7. Available from: https://doi.org/10.1155/2015/727324
» https://doi.org/10.1155/2015/727324
de Sá LLF, Nogueira NC, Filho ECDS, Figueiras A. Evaluation of antileishmanial potential of Gentiana kurroo Royle by in vitro and in silico methods. J Appl Pharm Sci. 2018;8(2):150–63. Available from: https://dx.doi.org/10.7324/JAPS.2018.8223
» https://doi.org/10.7324/JAPS.2018.8223
Sampaio TPD, Oshiro Junior JA, da Fonsêca NF, de Medeiros ACD. Biological evaluation and compatibility study of oral mucoadhesive hydrogel formulations using Schinopsis brasiliensis Engler. extract and excipients. J Therm Anal Calorim. 2023;148(1):141–58. Available from: https://doi.org/10.1007/s10973-022-11504-3
» https://doi.org/10.1007/s10973-022-11504-3
Saraiva AM, Saraiva CL, Cordeiro RP, Soares RR, Xavier HS, Caetano N. Atividade antimicrobiana e sinérgica das frações das folhas de Schinopsis brasiliensis Engl. frente a clones multirresistentes de Staphylococcus aureus. Rev Bras Plant Med. 2013;15(2):199–207. Available from: https://doi.org/10.1590/S1516-05722013000200006
» https://doi.org/10.1590/S1516-05722013000200006
Sawicka B, Ziarati P, Messaoudi M, Agarpanah J, Skiba D, Bienia B, et al. Role of herbal bioactive compounds as a potential bioavailability enhancer for active pharmaceutical ingredients. In: Handbook of Research on Advanced Phytochemicals and Plant-Based Drug Discovery. IGI Global. 2022; 450–95. Available from: https://doi.org/10.4018/978-1-6684-5129-8.ch023 .
» https://doi.org/10.4018/978-1-6684-5129-8.ch023.
Şenel S, Özdoğan AI, Akca G. Current status and future of delivery systems for prevention and treatment of infections in the oral cavity. Drug Deliv Transl Res. 2021;11(4):1703–34. Available from: https://doi.org/10.1007/s13346-021-00961-2
» https://doi.org/10.1007/s13346-021-00961-2
Sette-DE-Souza PH, Santana CP DE, Sousa IMO, Foglio MA, Medeiros FD DE, Medeiros ACD DE. Schinopsis brasiliensis Engl. to combat the biofilm-dependents diseases in vitro. An Acad Bras Cienc. 2020;92(4):e20200408. Available from: https://doi.org/10.1590/0001-3765202020200408
» https://doi.org/10.1590/0001-3765202020200408
Shoukat H, Pervaiz F, Rehman S. Pluronic F127-co-poly (2 acrylamido-2-methylpropane sulphonic acid) crosslinked matrices as potential controlled release carrier for an anti- depressant drug: in vitro and in vivo attributes. Chem Pap. 2022;76(5):2917–33. Available from: https://doi.org/10.1007/s11696-022-02077-4
» https://doi.org/10.1007/s11696-022-02077-4
da Silva JB, Dos Santos RS, da Silva MB, Braga G, Cook MT, Bruschi ML. Interaction between mucoadhesive cellulose derivatives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance. Mater Sci Eng C Mater Biol Appl. 2021;119:111643. Available from: https://doi.org/10.1016/j.msec.2020.111643
» https://doi.org/10.1016/j.msec.2020.111643
Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, et al. An Overview of cellulose derivatives-based dressings for wound-healing management. pharmaceuticals. 2021;14(12):1215. Available from: https://doi.org/10.3390/ph14121215
» https://doi.org/10.3390/ph14121215
Watchorn J, Burns D, Stuart S, Gu FX. Investigating the molecular mechanism of protein-polymer binding with direct saturation compensated nuclear magnetic resonance. Biomacromolecules. 2022a;23(1):67–76. Available from: https://doi.org/10.1021/acs.biomac.1c00944
» https://doi.org/10.1021/acs.biomac.1c00944
Watchorn J, Stuart S, Burns DC, Gu FX. Mechanistic Influence of Polymer Species, Molecular Weight, and Functionalization on Mucin–Polymer Binding Interactions. ACS Appl Polym Mater. 2022b;4(10):7537–46. Available from: https://pubs.acs.org/doi/10.1021/acsapm.2c01220
Wu C-Y, Armstrong B, Vlachos N. Characterization of powder flowability for die filling. Part Sci Technol. 2012;30(4):378–389. https://doi.org/10.1080/02726351.2011.588302
» https://doi.org/10.1080/02726351.2011.588302
Yamashita H, Sun CC. Expedited Tablet Formulation Development of a Highly Soluble Carbamazepine Cocrystal Enabled by Precipitation Inhibition in Diffusion Layer. Pharm Res. 2019;36(6):90. Available from: https://doi.org/10.1007/s11095-019-2622-7
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Pharmaceutical Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.