Phytochemical evaluation and antioxidant potential of Echinodorus macrophyllus extracts
DOI:
https://doi.org/10.1590/Keywords:
Chapéu de couro, FRAP, Phenolic compounds, Soxhlet, UltrasoundAbstract
Belonging to the Alismataceae family, Echinodorus macrophyllus, known in Brazil as “chapéu de couro”, is popular in the food industry, where it is used in teas and infusions. The objective of this study was to evaluate the active chemical compounds in the powder of E. macrophyllus leaves extracted by two different methods (Soxhlet [SXT] and ultrasound-assisted extraction [UAE]), quantify the total phenolic compound (TPC) and total flavonoid (TFC) content, and evaluate the antioxidant potential and larvicidal activity. The SXT extraction was the most efficient (6.05% yield). Analysis by thin-layer chromatography (TLC) and high-performance liquid chromatography with a diode array detector (HPLC-DAD) evidenced the presence of cinnamic acid derivatives, flavones, and flavanones in the extracts. The TPC was higher in the SXT extract (7.71±0.05 µg GAE/mL). However, there was no significant difference in TFC. The SXT extract exhibited greater antioxidant potential according to the ferric reducing antioxidant power (FRAP) method (IC50=3.37±0.45 µg/mL), while the UAE extract showed higher activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50=42.16±5.79 µg/mL). Both extracts were nontoxic to Artemia salina, suggesting the potential health benefits of this plant, which is rich in phenolic compounds and diverse pharmacological properties.
Downloads
References
Antunes C, Arbo MD, Konrath EL. Hepatoprotective native plants documented in brazilian traditional medicine literature: current knowledge and prospects. Chem Biodivers. 2022; 19(6): e202100933.
Araújo SG, Pinto MEA, Silva NL, Santos FJL, Castro AHF, Lima LAR Dos S. Antioxidant and allelopathic activities of extract and fractions from Rosmarinus officinalis. Biochem Biotechnol Rep. 2013; 2(1): 35-43.
Barbosa UA, Dos Santos IF, Dos Santos AMP, Dos Santos DC, Da Costa GM. Determination and evaluation of the metals and metalloids in the chapeu-de-couro (Echinodorus macrophyllus (Kunth) Micheli). Biol Trace Elem Res. 2013; 154(3): 412-7.
Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem. 2001; 49(6): 2774-9.
Da Costa GAF, Morais MG, Saldanha AA, Silva ICA, Aleixo AA, Ferreira JMS, et al. Antioxidant, antibacterial, cytotoxic, and anti-inflammatory potential of the leaves of Solanum lycocarpum A. St. Hil. (Solanaceae). Evid Based Complement Alternat Med. 2015; 2015: e315987.
Da Silva GP, Fernandes DC, Vigliano MV, Da Fonseca EN, Santos SVM, Marques PR, et al. Flavonoid-enriched fraction from Echinodorus macrophyllus aqueous extract exhibits high in-vitro and in-vivo anti-inflammatory activity. J Pharm Pharmacol. 2016; 68(12): 1584-96.
Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, Da Silva AHM, Silva AGB, et al. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol. 2019; 21(9): e541.
Fernandes DC, Martins BP, Da Silva GP, Da Fonseca EN, Santos SVM, Velozo LSM, et al. Echinodorus macrophyllus fraction with a high level of flavonoid inhibits peripheral and central mechanisms of nociception. J Tradit Complement Med. 2021; 12(2): 123-30.
Ferreira MI, Gonçalves GG, Ming LC. Echinodorus macrophyllus (Kunth) Micheli. In: Albuquerque UP, Patil U, Máthé A, Medicinal and aromatic plants of South America: Brazil, 1 ed. Dordrecht, Springer Netherlands, 2018: 211-7.
Flor RV, Campos MAA, Solano AGR, Jokl L, Dantas-Barros AM. Drying of Echinodorus macrophyllus and autoclaving and lyophilization of the fluid-extract: effects on the pharmacochemical composition. Rev Bras Farmacogn. 2011; 21(3): 518-24.
Franco RR, Carvalho DD, de Moura FBR, Justino AB, Silva HCG, Peixoto LG, et al. Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus. J Ethnopharmacol. 2018; 215: 140-6.
Garcia EF, De Oliveira MA, Candido LCM, Coelho FM, Costa VV, Queiroz-Junior CM, et al. Effect of the hydroethanolic extract from Echinodorus grandiflorus leaves and a fraction enriched in flavone-C-glycosides on antigen-induced athritis in mice. Planta Med. 2016; 82(5): 407-13.
Gasparotto FM, Palozi RAC, Da Silva CHF, Pauli KB, Donadel G, Lourenço BHLB, et al. Antiatherosclerotic properties of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli: from antioxidant and lipid-lowering effects to an anti-inflammatory role. J Med Food. 2019; 22(9): 919-27.
Kawabata K, Mukai R, Ishisaka A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct. 2015; 6(5): 1399-417.
Kobayashi J, Sekiguchi M, Shigemori H, Ohsaki A. Echinophyllins A and B, novel nitrogen-containing clerodane diterpenoids from Echinodorus macrophyllus. J Nat Prod. 2000; 63(11): 1576-9.
Lagouri V, Alexandri G. Antioxidant properties of greek O. dictamnus and R. officinalis methanol and aqueous extracts - HPLC determination of phenolic acids. Int J Food Prop. 2013; 16(3): 549-62.
Lunardi RF, Wohlenberg M, Medeiros N, Agostini F, Funchal C, Dani C. In vitro antioxidant capacity of tea of Echinodorus grandiflorus, “leather hat” in Wistar rat liver. Biomed Sci. 2014; 86(3): 1451-61.
Mano-Sousa BJ, Gonçalves TPR, Alves BC, De Araújo PFA, Lima LARS, Almeida JMD. Chapter 3. Evaluation of the antioxidant and larvicidal potential of phenolic and flavonoid compounds from different extracts of the flowers of Matricaria recutita L. In: Feng C, Martín JFG. The Book of Flavonoids, 1 ed., New York, Nova Science Publishers; 2021: 145-68.
Mano-Sousa BJ, Alves BC, Andrade FP de, Duarte-Almeida JM. Is turbo-extraction an efficient method for obtaining cannabinoids? Res Soc Dev. 2022; 11(15): e450111534562.
Matos FJA. Introdução a fitoquímica experimental. 2 ed., Ceará, Edições UFC, 2009.
Marques AM, Provance DW, Kaplan MAC, Figueiredo MR. Echinodorus grandiflorus: ethnobotanical, phytochemical and pharmacological overview of a medicinal plant used in Brazil. Food Chem Toxicol. 2017; 109(2): 1032-47.
Morais MG, Saldanha AA, Azevedo LS, Mendes IC, Rodrigues JPC, Amado PA, et al. Antioxidant and anti-inflammatory effects of fractions from ripe fruits of Solanum lycocarpum St. Hil. (Solanaceae) and putative identification of bioactive compounds by GC-MS and LC-DAD-MS. Food Res Int. 2022; 156: e111145.
Pereira RS, Costa VV, Gomes GLM, Campana PRV, Pádua RM, Barbosa M, et al. Anti-Zika virus activity of plant extracts containing polyphenols and triterpenes on vero CCL-81 and human neuroblastoma SH-SY5Y cells. Chem Biodivers. 2022; 19(4): e202100842.
Pimenta LPS, Pinto GB, Takahashi JA, Silva LGF, Boaventura MAD. Biological screening of annonaceous Brazilian medicinal using Artemia salina (brine shrimp test). Phytomed. 2003; 10(2-3): 209-12.
Prando TBL, Barboza LN, Gasparotto FM, Araújo VO, Tirloni CAS, De Souza LM, et al. Ethnopharmacological investigation of the diuretic and hemodynamic properties of native species of the Brazilian biodiversity. J Ethnopharmacol. 2015; 174: 369-78.
Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem. 2003; 51(3): 571-81.
Santos RR, Da Fonseca FSA, Azevedo AM, Martins ER. Marcadores químicos em espécies de Echinodorus (Alismataceae) utilizadas como chapéu-de-couro. Sci Plena. 2021; 17(4): e040202.
Silva NLA, Miranda FAA, Conceição GM. Triagem Fitoquímica de Plantas de Cerrado, da Área de Proteção Ambiental Municipal do Inhamum. Sci Plena. 2010; 6(2): 1-17.
Souza RR, Gasparoti PS, De Paula JAM. Obtenção de extratos de plantas medicinais: uma revisão de escopo dos métodos extrativos modernos em comparação ao método clássico por soxhlet. Mov. 2022; 15(1): e20220013.
Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr. 2017; 56: 2215-44.
Urrea-Victoria V, Pires J, Torres PB, dos Santos DYAC, Chow F. Ensaio antioxidante em microplaca do poder de redução do ferro (FRAP) para extratos de algas. Instituto de Biociências, Universidade de São Paulo. 2016: 1-6.
Vaz MSM, Da Silva MSV, Oliveira RJ, Mota JS, Brait DRH, De Carvalho LNB, et al. Evaluation of the toxicokinetics and apoptotic potential of ethanol extract from Echinodorus macrophyllus leaves in vivo. Regul Toxicol Pharmacol. 2016; 82: 32-8.
Wagner H, Bladt S. Plant drug analysis: a thin layer chromatography atlas. Berlin: Springer; 1996.
Wang M, Firrman J, Liu L, Yam K. A review on flavonoid apigenin: dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed Res Int. 2019: e7010467.
Yao X, Jiang W, Yu D, Yan Z. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway. Food Funct. 2019; 10(2): 703-12.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Brazilian Journal of Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.